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SUMMARY 
 

In 2006, we published a paper that is based on the present report1. Because of a restriction on the 
number of printed pages, we had to omit a good part of the analysis. The omissions were so 
extensive that even the author could not follow the mathematical trend when looking at the paper 
a few years later. For this reason, we went back to the original notes and compiled this report that 
gives a detailed account of the subject matter. In addition to aiding in understanding how the 
results in the paper were obtained, this report can also guide the reader in extending the results to 
other geometries, such as a circular or rectangular waveguide. 
 
The problem we deal with here is the classical problem of radiation of a semi-infinite coaxial line 
into a half-space. With respect to a rectangular coordinate system xyz, the coaxial line is along 
the z-axis and originates at minus infinity. The inner conductor terminates at z = 0, while the 
outer one opens up into an infinite plane perpendicular to the coaxial line. Details on the history 
and bibliography of this problem are given in the aforementioned paper and will not be repeated 
here. Our work on this problem differs from that of other works in that it is an exact formulation 
of the problem in terms of boundary integral equations (BIEs). The idea for this approach 
originated in our work on scattering by an indentation on a ground plane2. Its main characteristic 
is that the domain of the integral equations does not involve the infinite plane. 
 
In this report, we not only provide the missing analysis for the geometry we just described but 
we also present the problem in a more general setting. In Part 1, we derive BIEs for a monopole 
over a perfectly conducting plane, driven by a coaxial line. The monopole may or may not be a 
continuation of the center conductor of the coaxial line and can be quite general in shape. The 
integral equations extend over the monopole, the opening to free space of the coaxial line and 
over either the semi-infinite walls of the coaxial line or over a finite part of them and the inter-
wall spacing at the end of the finite part. 
 
In Part 2, we employ the equations we found in Part 1 to the problem we presented in the paper. 
We take advantage of the circular symmetry of the problem to reduce the vector integral 
equations to three scalar equations. By expressing the unknown current densities in terms of the 
natural modes of the coaxial line, we show that the problem can be reduced to solving a single, 
scalar integral equation. We also derive expressions for the far fields in the half-space in which 
the coaxial line radiates. In Part 3, we take advantage of the orthogonality properties of the 
modal functions to convert the scalar integral equation into an infinite system of linear algebraic 
equations. We also convert the coefficients of the system from double to single integrals and 
proceed to show how to compute them. In Part 4, we provide detailed information on how we 
compute the system of equations and consider four different coaxial lines for which we compute 
a number of quantities of interest. In the last part, Conclusions, we summarize the work and offer 
suggestions for further work. 

  

                                                 
1 J. S. Asvestas, “Radiation of a coaxial line into a half-space”, IEEE Trans. Antennas Propagat., Vol. 54, No. 6, pp. 
1624-1631, (2006). 
2 J. S. Asvestas and R.E. Kleinman, “Electromagnetic Scattering by Indented Screens,” IEEE Trans. Antennas 
Propagat., Vol. 42, pp. 22-30, (1994). 
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PART 1 
INTEGRAL EQUATIONS FOR A MONOPOLE OVER A GROUND PLANE 

 
 

ABSTRACT 
 
In Part 1, we present a new approach to the problem of monopole radiation over an infinite, 
perfectly conducting plane. The monopole is fed by an air-filled, infinite, coaxial line. The 
approach we use is mathematically rigorous and physically exact. It leads to a system of 
boundary integral equations (BIEs) that can be solved numerically using well established 
methods. 
 
Part 1 has three chapters. In the first chapter, we derive BIEs that extend over the entire length of 
the walls of the infinite coaxial line. The monopole is not physically connected to the center 
conductor of the coaxial line. The BIEs involve the electric surface-current density as the 
unknown. 
 
In the second chapter, the geometry remains the same as in the first part but the BIEs extend over 
the part of the walls of the coaxial line that border its connection to the infinite plane. This is 
accomplished by introducing an additional unknown, namely, the magnetic surface-current 
density. We show that the results of the first part can be obtained from the results of the second 
by a series of transformations and we also derive formulas for the far field. 
 
In the third chapter, we make the monopole a natural extension of the center conductor of the 
coaxial line. We then use the results of the first two parts to obtain BIEs for this, more realistic, 
case. 
 
We point out that the shape of the monopole is quite arbitrary but that the BIEs are valid only 
when all materials are perfectly conducting. 
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CHAPTER 1 
EQUATIONS EXTENDING OVER THE ENTIRE WALLS OF THE LINE 
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1. INTRODUCTION 
 
 In this chapter, we formulate the problem of radiation by a monopole over a ground plane in 
terms of BIEs. The ground plane is infinite and the monopole is fed by an infinite coaxial line. 
This formulation is the foundation for the rest of the report and contains general comments that 
will not be found elsewhere in this report. 
 
 We derive BIEs for the geometry of Figure 1.1. All surfaces are perfectly conducting. The 
inner and outer radii of the coaxial line are a and b, respectively. The line supports only a TEM 
wave which means that (references 1 and 2) 
 

 1
2

a b
k


  (1.1) 

 
where k is the wavenumber of the time-harmonic ( e i t ) electromagnetic wave in the line. 
 

z

 
z=0

a

b

l

h

S

 
Figure 1.1. A cylindrical monopole over a ground plane, fed by a coaxial line. 

 
 The excitation of the line occurs at z    and results in a TEM wave with fields 
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e e

ˆ ˆ( ) , ( )

ln ln

ikz ikz
g gV YV

b b

a a

 
 

 

 
   
   
   

E r H r . (1.2) 

 
where V is the voltage of the inner conductor with respect to the outer, and Y is the free-space 
impedance. We have also employed cylindrical coordinates ( , , z  ). Since the line is not 

infinite, we also have an induced wave in the line with fields { ,i iE H }. The total fields { ,t tE H } 
in the coaxial line are the sum of the generator and induced fields 
 
 ,t g i t g i   E E E H H H . (1.3) 
 
In the upper-half space, we have radiated fields { ,r rE H }. We proceed to determine these fields 
by first deriving integral equations and then solving them numerically. 
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2. INTEGRAL REPRESENTATIONS IN UPPER HALF-SPACE 
 
 In this section, we derive integral representations of the electromagnetic fields in the upper-
half space. From these representations, we will eventually obtain integral equations. 
 
 We apply Green’s second identity in the upper half-space of Figure 1.1, excluding the interior 
of the monopole. Thus, the surface integrals will extend over the surface S and the infinite plane 

0z  . There is also a surface integral over a hemisphere with center at the origin and whose 
radius tends to infinity. We omit this integral since the radiating fields satisfy the Silver-Müller 
condition and, hence, the integral will tend to zero as the radius of the hemisphere tends to 
infinity. From Green’s second identity (reference 3, p. 509), we have 
 

   1 1( ) ( , ) ( ) ( , )r r

D

dV


        E r r r E r r r  

   1 1

( 0)

ˆ ˆ( ) ( , ) ( ) ( , )r r

z S

n n dS
 

         E r r r E r r r  (2.1) 

 
where D  is the whole upper-half space except for the region occupied by the monopole, and n̂  
is the interior unit normal. The normal is equal to ẑ  at 0z   and points to the exterior of the 
monopole on S. The dyadic 1  has the form 
 
  1 ( , ) ( , ) ( , )i iik g g     r r r r r r    (2.2) 

 
where g is the free-space scalar Green’s function 
 

 
e

( , )
4

ik

g


 

  


r r

r r
r r

 (2.3) 

 
and 
 
 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ, ixx yy zz xx yy zz        (2.4) 

 
are the identity dyadic and its image about the xy-plane. Moreover, for any vector a, we define its 
image ai about the xy-plane by 
 
    , , , ,x y z i x y za a a a a a   a a . (2.5) 

 
 The dyadic  satisfies the differential equation 
 
      2

1 1, , ( , ) ( , )i ik ik         r r r r r r r r     (2.6) 
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and the boundary condition 
 
 1ˆ ( , )   at 0z z  r r  . (2.7) 
 
The electric field satisfies the reduced wave equation 
 
 2( ) ( )r rk  E r E r 0  (2.8) 
 
and the boundary conditions 
 
 ˆ ˆ( ) , ; ( ) , {( , , ) :  0, ( , ) }r rn S z x y z z x y        E r 0 r E r 0 r  (2.9) 
 
Substituting (2.6) and (2.8) in 

D
I  , the left-hand side of (2.1), we find 

 

   ( ) ( , ) ( , )r
i iD

D

I ik dV 



    E r r r r r   

        
 
 

2
   ,   >0

, [ , ]
  ,   <0

r

r r
i i i r

i iD D

z
ik dV ik dV k Z

z
 

 

            
 

 
H r

E r r r E r r r
H r

 . 

  (2.10) 
 
Substituting (2.7) and (2.9) in I, the right-hand side of (2.1), we find 
 

  1 1ˆ ˆ( ) ( , ) ( ) ( , )r r

S

I n dS ikZ n dS


         E r r r H r r r  . (2.11) 

 
Combining the last two results, we find that 
 

 
 
 

2
1 1

   ,   >0
ˆˆ ( ) ( , ) ( ) ( , )

  ,   <0

r

r r

r
iS i

z
z dS ikZ n dS k Z

z

                
 

H r
E r r r H r r r

H r
  . (2.12) 

 
This is the integral representation of the magnetic field in the upper-half space. If we use the 
definition of the dyadic from (2.2), we can write it as 
 

 2ˆ2 ( ) ( , ) ( , )r
tz g k g dS



           E r r r r r   

     
 

, >0
ˆ ˆ( ) ( , ) ( ) ( , )

, <0

r

r r
i ri

S i i

z
ikZ n g n g dS ikZ

z

                   


H r
H r r r H r r r

H r
. (2.13) 

 



NAWCADPAX/TR-2013/115 
 

7 

3. INTEGRAL REPRESENTATIONS INSIDE THE COAXIAL LINE 
 
 We proceed to find a representation of the magnetic field inside the coaxial line. We apply 
Green’s second identity to the region D of Figure 3.1. In the z-direction, this region extends 
between z d   and 0z  . In the lateral direction, it is bounded by the walls of the coaxial line. 
Thus, the four surfaces that bound D are , , aS  and bS . The normal is directed into this region. 

z

 
z=0

a

b

l

h

S

z = - d

n̂ n̂

D D

 

Sb
Sb Sa Sa

 
Figure 3.1. The region D of application of Green’s second identity. 

 
 Let 
 
 a bS S      . (3.1) 

 
We can use the same identity as for (2.1) to obtain an integral representation for the total 
magnetic field in D; thus, 
 

   ( ) ( , ) ( ) ( , )t t

D

dV        E r r r E r r r   
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  ˆ ˆ( ) ( , ) ( ) ( , )t tn n dS


             E r r r E r r r   (3.2) 

where   is the free-space dyadic Green’s function, defined by 
 
  ( , ) ( , )ik g   r r r r   (3.3) 

 
and satisfying the differential equation 
 
      2, , ( , )k ik      r r r r r r   . (3.4) 

 
The total electric field in D satisfies the reduced wave equation (2.8) and the boundary condition 
 
 ˆ ( ) ,t

a bn S S   E r 0 r . (3.5) 

 
As with (2.1), the volume integral DI  in (3.2) yields 
 

 
2 ( ) ,

,

t

D

k Z D
I

D

  
  

H r r

0 r
 (3.6) 

 
while the surface integral I  becomes 

 

  ˆ ( ) ( , )
a b

t

S S

I ikZ n dS


      H r r r  

  ˆ ˆ( ) ( , ) ( ) ( , )t tn ikZ n dS
 

             E r r r H r r r  . (3.7) 

 
Combining the last two statements, we have that 
 

 ˆ ( ) ( , )tn dS
 

    E r r r  

  
2 ( ) ,

ˆ ( ) ( , )
,

t
t k Z D

ikZ n dS
D

  
       


H r r

H r r r
0 r

 . (3.8) 

 
With the definition of the dyadic in (3.3), this becomes 
 

 2ˆ ( ) ( , ) ( , )tn g k g dS
 

           E r r r r r   

   ( ) ,
ˆ ( ) ( , )

,

t
t ikZ D

ikZ n g dS
D

  
       


H r r

H r r r
0 r

. (3.9) 

 
This is the integral representation of the magnetic field in D. 
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4. ELIMINATION OF THE ELECTRIC FIELD 
 
 In these section, we eliminate one of the unknowns, the electric field, from the magnetic field 
integral representations. 
 
 When >0z , we get from (3.9) that 
 

 2 2ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )t tz g k g dS z g k g dS
 

                          E r r r r r E r r r r r   

  ˆ ( ) ( , ) , >0tikZ n g dS z


      H r r r . (4.1) 

 
Since the electric field is continuous in crossing , we can substitute this in the top line of (2.13) 
to get 
 

  2 ˆˆ2 ( ) ( , ) ( , ) 2 ( ) ( , )t tz g k g dS i kZ n g dS
 

                   E r r r r r H r r r  

     ˆ ˆ( ) ( , ) ( ) ( , ) ,r r r
i

i
S

ikZ n g n g dS ikZ D                 H r r r H r r r H r r . (4.2) 

 
In a similar way, we can substitute the bottom line of (2.13) in the top line of (3.9) to get 
 

 2ˆ ( ) ( , ) ( , )tz g k g dS


           E r r r r r   

   ˆ ˆ( ) ( , ) ( ) ( , )
2

r r
i

i
S

ikZ
n g n g dS             H r r r H r r r  

    1
ˆ ( ) ( , ) ( ) ,

2
t t r

i i
ikZ n g dS ikZ D



                  H r r r H r H r r . (4.3) 

 
These two expressions give us an integral representation of the magnetic field everywhere. The 
integrals over  do not involve the electric field. 
 
 We can go a step further and eliminate the electric field altogether. On the annular disk , we 
have that z d  . We can show that, as d  , the integral over  tends to zero as 1d  . Taking 
this limit, we can write 
 

   ˆ ˆ( ) ( , ) ( ) ( , )r r
i

i
S

n g n g dS             H r r r H r r r  

    ˆ2 ( ) ( , )  , t rn g dS D


         H r r r H r r  (4.4) 

 
and 
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   1
ˆ ˆ( ) ( , ) ( ) ( , )

2
r r

i
i

S

n g n g dS             H r r r H r r r  

    1
ˆ ( ) ( , ) ( ) ,

2
t t r

i i
n g dS D



               H r r r H r H r r . (4.5) 

 
In the last two expressions, the region D extends over the entire space between the walls of the 
coaxial line. 
 
 For convenience, we define electric current densities on the various surfaces 
 
 ˆ( ) ( ) ,t

a an S  J r H r r  (4.6) 

 ˆ( ) ( ) ,t
b bn S  J r H r r  (4.7) 

 ˆ( ) ( ) ,tz    J r H r r  (4.8) 

 ˆ( ) ( ) ,r
S n S  J r H r r  (4.9) 

 
and substitute in (4.4) and (4.5) 
 

 2 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

g dS g dS g dS


          
  
  J r r r J r r r J r r r  

     ( ) ( , ) ( ) ( , )    ,   r
S S i i

S

g g dS D         J r r r J r r r H r r  (4.10) 

 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

g dS g dS g dS


          
  
  J r r r J r r r J r r r  

     1 1
( ) ( , ) ( ) ( , ) ( ) ,

2 2
t r

iS S i ii
S

g g dS D           J r r r J r r r H r H r r . (4.11) 

 
These are the two integral representations for the magnetic field in terms of the unknown current 
densities. Equation (4.10) clearly displays the dependence of the radiated fields on the fields 
inside the coaxial line. Conversely, Equation (4.11) displays the dependence of the total fields 
inside the coaxial line on the geometry of the monopole and the resulting currents on it. Both 
expressions indicate the existence of a ground plane through the presence of the image of the 
gradient of the scalar Green’s function. We will use these integral representations next to obtain 
integral equations for the unknown current densities. 
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5. INTEGRAL EQUATIONS ON � AND S 
 
 The derivation of integral equations for the four unknown current densities is based on a 
theorem of Müller (reference 4), Theorem 46, p. 205). If we have a region D bounded by a 
closed surface S, with the unit normal n̂  pointing in the exterior (away from D), and if the 
surface current density J on S is continuous, then at any point r of S (with normal n̂ ) we have 
that 
 

    1
ˆ ˆ( ) ( , ) ( ) ( ) ( , )

2
e

i

S S
S

n g dS n g dS          J r r r J r J r r r  (5.1) 

 
where the expression on the left is to be interpreted in the sense of a limit, i.e., in the limit as we 
approach the surface from its exterior ( eS ) or interior ( iS ). 

 
 If we apply this theorem to (4.10), with the point r  on S and the approach from the exterior, 
we get 
 

 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

n g dS g dS g dS


            
  
  J r r r J r r r J r r r  

     1
ˆ ( ) ( , ) ( ) ( , ) ,   

2S S i Si
S

n g g dS S           J r r r J r r r J r r . (5.2) 

 
Again using (4.10), we approach a point on  
 

 ˆ ( ) ( , ) ( ) ( , )
a b

a b

S S

z g dS g dS
     

 J r r r J r r r  

   1
( ) ( , ) ( ) ( , )

2 S S i i
S

g g dS
     


 J r r r J r r r  

    ˆ ( ) ( , ) ,   z g dS 


        J r r r J r r . (5.3) 

 
We note that we can also use (4.11) to obtain this last result. We also observe that 
 
 ( , ) ( , ) , 0ig g z     r r r r  (5.4) 

 
and that 
 

    ( , )
ˆ ˆ( ) ( , ) ( ) ( ) ( , )

g
z g z g

z  





      
r r

J r r r J r J r r r . (5.5) 
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The last term here is zero because the current density does not have a z-component. Also, the 
derivative of the scalar Green’s function with respect to z is equal to zero when 0z z  . Thus, 
in place of (5.3), we have 
 

 ˆ ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ,
a b

a b

S S S

S S S

z g dS g dS g dS  
              
  
  J r r r J r r r J r r r J r r  

  (5.6) 
 
 We can also use (4.11) to obtain integral equations on the walls of the coaxial line. If the 
geometry is exactly as shown in Figure 2, then there is no problem. If, however, the geometry is 
more general, then we cannot use (4.11). As an example, consider the case where the radius of 
the monopole is greater than b. Then, for a point of aS  or bS  with z-coordinate between –h and – 

(h + l), the point ir  is inside the monopole, where the radiated magnetic field is not defined. For 

this reason, we develop a new representation for the magnetic field inside the coaxial line. 
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6. A SECOND REPRESENTATION OF THE MAGNETIC FIELD INSIDE 
THE COAXIAL LINE 

 
 For reasons presented at the end of the last section, we proceed to obtain another 
representation of the magnetic field inside the coaxial line. In place of (3.2), we write 
 

   2 2( ) ( , ) ( ) ( , )t t

D

dV        E r r r E r r r   

   2 2ˆ ˆ( ) ( , ) ( ) ( , ) ,t tn n dS D


            E r r r E r r r r   (6.1) 

 
where the Green’s dyadic of the second kind is defined by 
 
  2 ( , ) ( , ) ( , )i iik g g     r r r r r r   (6.2) 

 
and satisfies the differential equation 
 
      2

2 2, , ( , ) ( , )i ik ik         r r r r r r r r     (6.3) 

 
and the boundary condition 
 
 2ˆ ( , )   at 0z z  r r  . (6.4) 
 
 In place of (3.6), we then have 
 
 2 ( ) ,t

DI k Z D  H r r  (6.5) 
 
and, in place of (3.7), 
 

   2 2ˆ ˆ( ) ( , ) ( ) ( , )t tI n n dS


          E r r r E r r r  . (6.6) 

 
As in Section 3, the surface integral over  vanishes as d  . Because of (6.4), the first term 
vanishes over . It also vanishes over the walls of the coaxial line since the tangential component 
of the total electric field is zero there. We are thus left with 
 

 2 2 2( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

I ikZ dS dS dS 


           
  
  J r r r J r r r J r r r   . (6.7) 

 
Combining (6.5) and (6.7), we find 
 

 2 2 2( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ,
a b

t
a b

S S

dS dS dS ik D


            J r r r J r r r J r r r H r r    (6.8) 
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and, if we take definition (6.2) of the dyadic into consideration, 
 

      ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a a i b b ii i
S S

g g dS g g dS           J r r r J r r r J r r r J r r r  

   ( ) ( , ) ( ) ( , ) ( ) ,t
i i

g g dS D 


         J r r r J r r r H r r . (6.9) 

 
But on  
 
  ( ) ( , ) ( ) ( , ) 2 ( ) ( , ) , 0i i

g g g z         J r r r J r r r J r r r . (6.10) 

 
Thus, 
 

      ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a a i b b ii i
S S

g g dS g g dS           J r r r J r r r J r r r J r r r  

 2 ( ) ( , ) ( ) ,tg dS D


      J r r r H r r . (6.11) 

 
This is the second representation of the magnetic field inside the coaxial line. 
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7. INTEGRAL EQUATIONS ON THE WALLS OF THE COAXIAL LINE 
 
 In this section, we use the integral representation of the magnetic field that we obtained in the 
last section to get integral equations on the semi-infinite walls of the coaxial line. To this end, we 
employ (5.1) and (6.11). In the approach to the inner wall we get 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )
b

b b i i
S

n g g dS       J r r r J r r r  

 
1

ˆ2 ( ) ( , ) ( ) ,
2 a an g dS S



        J r r r J r r  (7.1) 

 
while in the approach to the outer 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )
b

b b i i
S

n g g dS       J r r r J r r r  

 
1

ˆ2 ( ) ( , ) ( ) ,
2 b bn g dS S



        J r r r J r r . (7.2) 

 
 Following this approach, we can ask what happens to (6.11) as the observation point r  
approaches . If we can get an integral equation on , then, together with (7.1) and (7.2), we will 
have three equations in three unknowns and, thus, we will be able to solve for the three current 
densities. We note, however, that none of these three equations contains information about the 
upper-half space. This says that the geometry of the upper-half space does not influence the 
behavior of these currents, which does not seem to be correct. We proceed to perform this 
calculation. First, we cross (6.11) with the unit normal on  
 

  ˆ ( ) ( , ) ( ) ( , )
a

a a i

S

z g g dS     J r r r J r r r  

  ˆ ( ) ( , ) ( ) ( , )
b

b b i

S

z g g dS      J r r r J r r r  

  ˆ2 ( ) ( , ) ( ) ,z g dS D 


       J r r r J r r . (7.3) 

 
In the first integral above, only the components transverse to the z-axis are involved; hence, we 
can write instead 
 

  ˆ ( ) ( , ) ( ) ( , )
a

a a i

S

z g g dS     J r r r J r r r  
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       ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )
a

a i a i

S

z g g z g g dS          J r r r r r J r r r r r  (7.4) 

 
which is equal to zero because of (5.4). The same is true about the second integral in (7.3). As 
the observation point approaches the surface, we apply (5.1) to the remaining integral to get that 
 

  ˆ ( ) ( , ) ,z g dS


     J r r r 0 r  (7.5) 

 
with the last statement also following from (5.5). Thus, we have the identity 0 0  or that we 
cannot obtain an integral equation from (6.11) when the observation point is on the surface . 
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8. THE SYSTEM OF INTEGRAL EQUATIONS 
 
 We have four unknowns, namely, the electric current densities defined in (4.6) through (4.9). 
With these, we associate the integral equations (5.2), (5.6), (7.1), and (7.2). A drawback of this 
system is that the surfaces aS  and bS  are semi-infinite in the z-direction and, hence, they will 

have to be terminated in any typical boundary-element scheme. For this reason, in Part 1I of this 
study, we return to the scheme where the parameter d is finite and see whether we can expand 
the system of integral equations to accommodate a magnetic current density. 
 
 One remark we wish to make is that (5.6) can also be obtained using the approach suggested 
by Hansen and Yaghjian (reference 5). Here, the region of application of Green’s second identity 
is the interior of the coaxial line and the entire upper-half space except for the region occupied 
by the monopole (Figure 3.1). If, with it, we use the free-space Green’s function in (3.3) we get 
 

 ( ) ( , ) ( ) , , c
a bg dS D D S S S



            J r r r H r r  (8.1) 

 
where c  stands for the metallic part of the xy-plane. Writing this compact statement out, we 
have 
 

 ( ) ( , ) ( ) ( , ) ( ) ( , )c

c
a b

a b

S S

g dS g dS g dS




         J r r r J r r r J r r r  

 
( ) ,

( ) ( , )
( ) ,

r

S t
S

D
g dS

D

  
     


H r r

J r r r
H r r

 (8.2) 

 
where 
 
 ˆ( ) ( ) ,c

r cz


  J r H r r . (8.3) 

 
In passing, we mention that, in (8.1), there should also be present an integral over a hemisphere 
with center the origin and a radius that tends to infinity. In the limit, however, this integral 
vanishes because the radiated fields obey the Silver-Müller radiation conditions. If this were a 
problem in scattering by a plane wave, as in reference 3, then we would have to use a stationery 
phase method to show that the integral vanishes. This is because a plane wave does not satisfy 
the Silver-Müller radiation conditions. Besides the scattered fields, the sum of the fields of the 
incident and reflected plane waves would appear in this integral. 
 
 If r  and we pre-cross (8.2) with the unit normal along the z-axis, then the surface integral 
over c  becomes zero for the same reason as (5.5), and we get 
 

 ˆ ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ,
a b

a b S

S S S

z g dS g dS g dS  
              
  
  J r r r J r r r J r r r J r r  

  (8.4) 
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which is identical with (5.6). We note that this is the only occasion in which the surface integral 
over the metallic part of the xy-plane is zero; otherwise, (8.2) could be used to obtain integral 
equations over the whole structure. 
 
 Another remark is that, in the formulation resulting in (8.1), instead of the free-space Green’s 
dyadic we can use the one in (2.2). Because of the property (2.7), the integral representation will 
not involve a surface integral over c . Proceeding as in Section 2, we get in place of (2.13) 
 

   ( ) ( , ) ( ) ( , )S S i i
S

g g dS     J r r r J r r r  

   ( ) ( , ) ( ) ( , )
a

a a i i
S

g g dS     J r r r J r r r  

       ( ) ( , ) ( ) ( , ) ,
b

b b i i ii
S

g g dS D D            J r r r J r r r H r H r r  (8.5) 

 
where H stands for the total magnetic field in either of the two regions. This statement is not 
entirely correct. For example, if ( , , 0)b z      r , then ir  does not belong to the region of 

integration D and the last term in (8.5) should be equal to zero. We can correct for this by 
introducing characteristic functions and writing a separate statement for each of the two regions. 
For example, in the upper region 
 

   ( ) ( , ) ( ) ( , )S S i i
S

g g dS     J r r r J r r r  

   ( ) ( , ) ( ) ( , )
a

a a i i
S

g g dS     J r r r J r r r  

         ( ) ( , ) ( ) ( , ) ,
b

r t
b b i D i ii i

S

g g dS D               J r r r J r r r H r r H r r  (8.6) 

 
where D , the characteristic function of the region D, is defined by 
 

  
1 ,

0 ,D

D

D



  

r
r

r
. (8.7) 

 
Still, we have to worry about the image point being on the boundary of D (the walls of the 
coaxial line). We can write a statement similar to (8.6) when the observation point is in D, with 
the same concerns. 
 
 The problem with an expression like (8.6) becomes evident when we try to obtain integral 
equations. The image of a point of S may correspond to a point somewhere in D. Thus, we may 
generate unknowns not only on the metallic boundaries but, also, in the regions D and D . This 
is quite unacceptable and we abandon this approach. 
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CHAPTER 2 
EQUATIONS EXTENDING OVER PART OF THE WALLS OF THE LINE 
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1. INTRODUCTION 
 
 In Chapter 1, we derived BIEs for the geometry of Figure 1.1. All surfaces are perfectly 
conducting. The ground plane is infinite and the coaxial line extends to infinity in the lower-half 
space. The inner and outer radii of the transmission line are a and b, respectively. The line 
supports only a TEM wave which means that (references 1 and 2 
 

 1
2

a b
k


  (1.1) 

 
where k is the wavenumber of the time-harmonic ( e i t ) electromagnetic wave in the line. 

z

 
z=0

a

b

l

h

S

 
Figure 1.1. A cylindrical monopole over a ground plane, fed by a coaxial line. 

 
 The excitation of the line occurs at z    and results in a TEM wave with fields 
 

 
e e

ˆ ˆ( ) , ( )

ln ln

ikz ikz
g gV YV

b b

a a

 
 

 

 
   
   
   

E r H r . (1.2) 

 
where V is the voltage of the inner conductor with respect to the outer, and Y is the free-space 
admittance. We have also employed cylindrical coordinates ( , , z  ). Since the line is not 
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infinite, we also have an induced wave in the line with fields { ,i iE H }. The total fields { ,t tE H } 
in the coaxial line are the sum of the generator and induced fields 
 
 ,t g i t g i   E E E H H H . (1.3) 
 
In the upper-half space we have radiated fields { ,r rE H }. 
 
 The integral equations we derived in Chapter 1 on the walls of the coaxial line, extend over the 
entire (infinite) length of the line. Here we will develop a system of integral equations that will 
extend over a portion of the walls of the line. The region under consideration is shown in Figure 
1.2. Inside the line, we will develop integral equations extending no deeper than z d  . In the 
process, we will use a number of results of Chapter 1. Equation numbers from there will be 
preceded by the Roman numeral I. 

z

 
z=0

a

b

l

h

S

z = - d

n̂ n̂

D D

 

Sb
Sb Sa Sa

 
Figure 1.2. The region D of application of Green’s second identity. 
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2. INTEGRAL REPRESENTATIONS IN THE EXTERIOR AND INTERIOR 
 
 For convenience, we define electric and magnetic current densities on  by 
 
 ˆ ˆ( ) ( ) , ( ) ( ) ,t tz z       J r H r M r E r r  (2.1) 

 
From (I.4.2) 
 

  2 ˆˆ2 ( ) ( , ) ( , ) 2 ( ) ( , )t tz g k g dS i kZ n g dS
 

                   E r r r r r H r r r  

     ( ) ( , ) ( ) ( , ) ,r
S S i i

S

ikZ g g dS ikZ D         J r r r J r r r H r r . (2.2) 

 
The surface   is defined in (I.3.1). Taking into consideration the current density definitions 
(I.4.6)-(I.4.9) and the ones above, we write 
 

 22 ( ) ( , ) ( , )g k g dS


      M r r r r r   

2 ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

i kZ g dS g dS g dS g dS 
 

             
  
   J r r r J r r r J r r r J r r r

    ( ) ( , ) ( ) ( , ) ,r
S S i i

S

ikZ g g dS ikZ D         J r r r J r r r H r r . (2.3) 

 
 We next complete (I.6.7) by supplying the integral over  from (I.6.6) 
 

 2( ) ( , )I dS 


  M r r r  

 2 2( ) ( , ) ( ) ( , )
a b

a b

S S

ikZ dS dS
     

 J r r r J r r r   

 2 2( ) ( , ) ( ) ( , )dS dS 
 


     


 J r r r J r r r   (2.4) 

 
Using (I.6.5) together with this, we get 
 

 2 2 2 2( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

ikZ dS dS dS dS 
 

             
  
   J r r r J r r r J r r r J r r r     

 2
2( ) ( , ) ( ) ,tdS k Z D



     M r r r H r r . (2.5) 
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By the definition (I.6.2) of the dyadic, the last integral in this becomes 
 

  2 2
2( ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )i i ii

dS ik g k g g k g dS 
 

             M r r r M r r r r r r r r r    

      3( ) ( , ) ( , ) ( , ) ( ) ( , ) ( )i ii i
ik g g dS ik g g dS  

 

           M r r r r r r r M r r r M r  

 (2.6) 
 
For the first integral on the right, we use the divergence theorem to write 
 

   ( ) ( , ) ( , )i i
g g dS



    M r r r r r  

       ( ) ( , ) ( , ) ( ) ( , ) ( , )i ii i
g g g g dS 



                M r r r r r M r r r r r  

      ˆ ( ) ( , ) ( , ) ( ) ( , ) ( , )i ii i
g g ds g g dS 

 

               M r r r r r M r r r r r . (2.7) 

 
The contour  is composed of the two contours that constitute the boundary of . The unit normal 
̂  on  is equal to the negative of the normal on each of the two walls of the coaxial line. The 
component of the magnetic current density along it is, by (2.1), the tangential component of the 
total electric field on each wall. Its value there is zero. Thus, the contour integral is equal to zero, 
and we have that 
 

 2( ) ( , )dS


M r r r  

      3( ) ( , ) ( , ) ( , ) ( ) ( , ) ( )i ii i
ik g g dS ik g g dS  

 

           M r r r r r r r M r r r M r . (2.8) 

 
Substitution of this and (I.6.11) in (2.5) gives 
 

      ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a a i b b ii i
S S

g g dS g g dS           J r r r J r r r J r r r J r r r  

   2 ( ) ( , ) ( ) ( , ) ( ) ( , )i i
g dS g g dS  

 

        J r r r J r r r J r r r  

      ( ) ( , ) ( , ) ( , ) ( ) ( , ) ( )i ii i

iY
g g dS ikY g g dS

k   
 

           M r r r r r r r M r r r M r  

 ( ) ,t D  H r r . (2.9) 
 
 This is the total magnetic field representation in D. We proceed to get one for the total electric 
field. We begin with Green’s second identity 
 

   1 1( ) ( , ) ( ) ( , )t t

D

dV        H r r r H r r r   
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  1 1ˆ ˆ( ) ( , ) ( ) ( , ) ,t tn ikY n dS D


               H r r r E r r r r  . (2.10) 

The Green’s dyadic of the first kind is defined in (I.2.2). For the volume integral, we get 
 
 2 ( ) ,t

DI k Y D   E r r . (2.11) 
 
From (I.2.2) 
 

 1ˆ ( ) ( , )tn dS


    H r r r  

  ˆ ( ) ( , ) ( , )t
i i

ik n g g dS


              H r r r r r  

  3 ˆ ( ) ( , ) ( , )t
i iik n g g dS



       H r r r r r   

  ˆ ( ) ( , ) ( , )t
i i

ik n g g dS


              H r r r r r . 

  3 ˆ ( ) ( , ) ( , )t
i iik n g g dS



       H r r r r r  . (2.12) 

 
The surface divergence theorem has been applied above to the closed surface . The result is, of 
course, zero. For the remaining term in (2.10) 
 

  1 1ˆ ( ) ( , ) ( ) ( , ) ( ) ( , ) ( , )t
i in dS dS ik g g dS 

  

              E r r r M r r r M r r r r r     

   ( ) ( , ) ( ) ( , )i i
ik g g dS 



     M r r r M r r r . (2.13) 

 
In arriving at this result, we have taken into consideration the fact that the total electric field is 
zero on the walls of the coaxial line and that the tangential component of the dyadic is equal to 
zero on the 0z   plane. Substituting the above results in (2.10), we get 
 

    ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )t t
i i ii

iZ
n g g dS ikZ n g g dS

k  

                      H r r r r r H r r r r r   

   ( ) ( , ) ( ) ( , ) ( ) ,t
i i

g g dS D 


         M r r r M r r r E r r . (2.14) 

 
Moreover, breaking the first and second integrals into their constituent parts 
 

        ( ) ( , ) ( , ) ( ) ( , ) ( , )
a b

a i b ii i
S S

iZ
g g dS g g dS

k

                      

 J r r r r r J r r r r r  
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      ( ) ( , ) ( , ) 2 ( ) ( , )i i
g g dS g dS 

 

               
 J r r r r r J r r r  

      ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
a b

a i a b i bi i
S S

ikZ g g dS g g dS
       

 r r J r r r J r r r J r r r J r  

   ( , ) ( ) ( , ) ( ) 2 ( , ) ( )i i
g g dS g dS  

 

     


 r r J r r r J r r r J r  

   ( ) ( , ) ( ) ( , ) ( ) ,t
i i

g g dS D 


         M r r r M r r r E r r . (2.15) 

 
This is the integral representation for the electric field. 
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3. INTEGRAL EQUATIONS ON � 
 
 From (I.5.1) and (2.10), we get that 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

z g g dS      J r r r J r r r  

   ˆ ˆ( ) ( , ) ( ) ( , ) 2 ( ) ( , )
b

b b i i
S

z g g dS z g dS


          J r r r J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )i i
z g g dS 



      J r r r J r r r  

   ˆ ( ) ( , ) ( , )i i

iY
z g g dS

k 


        M r r r r r  

    1
ˆ ( , ) ( ) ( , ) ( ) ( ) ,

2i i
ikYz g g dS  



        r r M r r r M r J r r . (3.1) 

 
We can simplify this expression considerably. For the third term, we write 
 

 
( , )

ˆ2 ( ) ( , ) 2 ( )
g

z g dS dS
z 

 





     

r r
J r r r J r  (3.2) 

 
while for the fourth 
 

     ˆ ˆ( ) ( , ) ( ) ( , ) ( ) ( , )i i
z g g z g            J r r r J r r r J r r r  

   ( , )( , )
ˆ ˆ ˆ( ) ( , ) ( ) ( )t t i

i
i

i

gg
z z g z

z z


 
               

r rr r
H r r r J r H r  

 
( , ) ( , ) ( , )

( ) ( )i ig g g

z z z 
            

r r r r r r
J r J r . (3.3) 

 
Thus, in place of (3.1), we can write 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

z g g dS      J r r r J r r r  

    ( , )
ˆ ( ) ( , ) ( ) ( , ) 2 ( )

b

b b i i
S

g
z g g dS dS

z






       

r r
J r r r J r r r J r  

  ( , )
ˆ( ) ( ) ( , ) ( , )i

i

g iY
dS z g g dS

z k 
 





        

r r
J r M r r r r r  

   1
ˆ ( ) ( , ) ( , ) ( ) ,

2iikYz g g dS 


       M r r r r r J r r . (3.4) 
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This is the integral equation for the electric current density on . For the magnetic current 
density, we have from (2.15) 
 

        ˆ ( ) ( , ) ( , ) ( ) ( , ) ( , )
a b

a i b ii i
S S

iZ
z g g dS g g dS

k

                       

 J r r r r r J r r r r r  

      ( ) ( , ) ( , ) 2 ( ) ( , )i i
g g dS g dS 

 

               
 J r r r r r J r r r  

      ˆ ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
a b

a i a b i bi i
S S

ikZz g g dS g g dS
        

 r r J r r r J r r r J r r r J r  

   ( , ) ( ) ( , ) ( ) 2 ( , ) ( )i i
g g dS g dS  

 

     


 r r J r r r J r r r J r  

    1
ˆ ( ) ( , ) ( ) ( , ) ( ) ,

2i i
z g g dS  



           M r r r M r r r M r r . (3.5) 

 
We can re-write this as 
 

        ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )
a b

a i b i

S S

iZ
z g g dS z g g dS

k

               

 J r r r r r J r r r r r  

      ˆ ˆ( ) ( , ) ( , ) 2 ( ) ( , )iz g g dS z g dS 
 

            


 J r r r r r J r r r  

    ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )
a b

a i b i

S S

ikZ z g g dS z g g dS
         

 J r r r r r J r r r r r  

  ˆ ˆ( ) ( , ) ( , ) 2 ( , ) ( )iz g g dS g z dS 
 

       


 J r r r r r r r J r  

 
( , ) 1

( ) ( ) ,
2

ig
dS

z 








    
r r

M r M r r . (3.6) 
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4. SYSTEM OF INTEGRAL EQUATIONS 
 
 Besides the integral equations (3.4) and (3.6), the system of equations will include equations 
from the rest of the structures that make up the problem. Using the procedures of Chapter 1, we 
get from (2.9) that 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ˆ( ) ( , ) ( ) ( , ) 2 ( ) ( , )
b

b b i i
S

n g g dS n g dS


            J r r r J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )i i
n g g dS 



       J r r r J r r r  

   ˆ ( ) ( , ) ( , )i i

iY
n g g dS

k 


         M r r r r r  

    1
ˆ ( , ) ( ) ( , ) ( ) ( ) ,

2i a ai
ikYn g g dS S 



         r r M r r r M r J r r  (4.1) 

 
and 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ˆ( ) ( , ) ( ) ( , ) 2 ( ) ( , )
b

b b i i
S

n g g dS n g dS


            J r r r J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )i i
n g g dS 



       J r r r J r r r  

   ˆ ( ) ( , ) ( , )i i

iY
n g g dS

k 


         M r r r r r  

    1
ˆ ( , ) ( ) ( , ) ( ) ( ) ,

2i b bi
ikYn g g dS S 



         r r M r r r M r J r r . (4.2) 

 
 From (I.4.2) 
 

 ˆ ˆ( ) ( , ) ( ) ( , )
iY

ikYz g dS z g dS
k 

 

     M r r r M r r r  

 ˆ ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

z g dS g dS g dS


           
  
  J r r r J r r r J r r r  

  ˆ ( ) ( , )    ,   S

S

z g dS          J r r r J r r  (4.3) 
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and 
 

 ˆ ˆ2 ( ) ( , ) 2 ( ) ( , )
iY

ikYn g dS n g dS
k 

 

       M r r r M r r r  

 ˆ2 ( ) ( , ) ( ) ( , )
a b

a b

S S

n g dS g dS
      

 J r r r J r r r  

 ( ) ( , ) ( ) ( , )g dS g dS 
 

     


 J r r r J r r r  

     1
ˆ ( ) ( , ) ( ) ( , ) ,

2S S i Si
S

n g g dS S           J r r r J r r r J r r . (4.4) 
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5. REMARKS 
 
 We have some concern here as to whether the equations we just derived are the right ones for 
determining the unknown currents. We will not know the answer to this until we compare 
numerical results between this system and the one of Chapter 1. If this system provides the 
correct answers, then it is the preferred one because it also provides substantial computational 
savings if we keep d small. We note that, in this formulation, current densities are assumed 
piecewise differentiable in the interior of the line. In Chapter 1, it is sufficient that these currents 
are continuous. 
 
 Equations (2.5) and (2.14) give the fields in the interior of the coaxial line. They are the result 
of applying Green’s second identity in the region bounded by the closed surface , defined in 
(I.3.1) 
 
 a bS S      . (5.1) 

 
We make two remarks. The first is that the integral over the surface  ( z d  ) can be converted 
to an integral over the two cylindrical surfaces that join this surface to the identical disk at 
z   . Indeed, the walls and the two disks make up a closed surface. Application of the 
appropriate Green’s second identity (in each of the two cases), with the observation point outside 
this surface ( 0d z   ), leads to the result that the integral over  is equal to the integral over 
the other three surfaces. As remarked in I, the integral over the disk at infinity is equal to zero; 
hence, the conclusion that the integral over  is equal to the same integral over the cylindrical 
walls extending from – d to  . In the process, the terms involving the circumferential 
components of the electric field drop out, because the walls are perfectly conducting, and we 
end-up with the same representations as in Chapter I. We see, then, that we can start with the 
present case and, as a corollary, derive the equations in Chapter I. 
 
 The second remark is, that when we use the present approach to compute the current densities 
on , then we can use the integral representations to compute the fields in the coaxial line only 
in the region enclosed by . Differently stated, we are not able to compute the fields below depth 
–d. In I, we can compute the fields at any depth inside the line. Perhaps, this is the trade-off 
between the two methods. We are confident that the present approach is correct and that it is the 
preferred one computationally since what we are striving for is to get the fields correctly at the 
opening, , of the coaxial line. 
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6. FAR FIELD 
 
 We will present two ways to compute the far field. First, we point out that we can express the 
far field in terms of an integral over  (and an integral over S). The integral over , however, 
contains the magnetic current density on , a quantity we have not computed above. We are thus 
led to consider other representations of the far field. These representations will be for the 
magnetic field. To obtain representations for the electric field, we recall the following. 
 
 In the far field, the magnetic field can be expressed in the form 
 

 
e

ˆ ˆ ˆ( ) ~ ( ) ( ) ,
ikr

r f r r r
r




 H r . (6.1) 

 
From Maxwell’s equations 
 

 
1 e e

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ~ ( ) ( ) ( ) ( ) ,
ikr ikr

r r f r r f r r r
ikY r r

 
             

   
E r H r . (6.2) 

 
But 
 

  2e e
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ~ ( ) ( ) ,

ikr ikr

f r r ik f r r r O r r
r r

 
 

 
       
 

 (6.3) 

 
and 
 
  1ˆ ˆ( ) ,r O r r     . (6.4) 

 
Hence 
 

 
e

ˆ ˆ ˆ ˆ( ) ~ ( ) ( ) ,
ikr

r Z f r r r r
r




   E r  (6.5) 

 
or 
 
 ˆ( ) ( ) ,r rZr r    E r H r . (6.6) 
 
We turn to the derivation of the far-field representations of the magnetic field. The first comes 
from (2.3). We observe that 
 

 
ˆe e

( , ) ~ ,
4

ikr ikr

g r
r

  

   


r

r r  (6.7) 
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 2ˆ ˆ ˆ( , ) ~ ( , ) , ( , ) ~ ( , ) ,g ikg r g k g r r r            r r r r r r r r  (6.8) 
 
and substitute in (2.3) 
 

   2 2ˆ ˆ~ 2 ( ) ( , ) ( , )rikZ k g r r k g dS


         H r M r r r r r   

 2 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

k Zr g dS g dS g dS g dS 
 

           
  
   J r r r J r r r J r r r J r r r  

  2 ˆ ˆ( ) ( , ) ( ) ( , ) ,S S i i
iS

k Z r g r g dS r            J r r r J r r r . (6.9) 

 
We observe that 
 
          ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )r r r r r r r r                           M r M r M r M r    (6.10) 

 
and that 
 

      ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )S i S S
i

r x y z r z y r                 
J r J r J r  

            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( )S S S Sy z x r x z r z x y r y x r                        
J r J r J r J r  

            ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )S S S Sx y r z z r y y z r x x r z                         
J r J r J r J r  

        ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( ) ( ) ( )S S S i
z x r y y r x r            

J r J r J r . (6.11) 

 
Substitution of the last two results in (6.9) gives 
 

   ˆ ˆ~ 2 ( ) ( , )r i kYr r g dS


 
      

 
H r M r r r  

 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

i kr g dS g dS g dS g dS 
 

           
  
   J r r r J r r r J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , ) ,S S ii
S

ikr g g dS r        J r r r J r r r  (6.12) 

 
where g is given by (6.7). 
 
 A second representation of the far field can be obtained from (I.6.1) with 2  replaced by 1  
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   1 1( ) ( , ) ( ) ( , )t t

D

dV        E r r r E r r r   

   1 1ˆ ˆ( ) ( , ) ( ) ( , ) ,t t
fn n dS D



            E r r r E r r r r  . (6.13) 

 
The region fD  is the upper-half space, excluding the monopole structure and the reflection of 

the region D about the xy-plane. We can think of it as representing the far-field region. Thus, the 
contribution of the volume integral is zero while, for the surface integral, we have 
 

   1 1ˆ ˆ( ) ( , ) ( ) ( , )t tn n dS


         E r r r E r r r   

  1ˆ ( ) ( , )tz dS


      E r r r  

  1 1ˆ ˆ( ) ( , ) ( ) ( , )t tn ikZ n dS


             E r r r H r r r   

 1 1ˆ ˆ( ) ( , ) ( ) ( , )
a b

t t

S S

ikZ n dS ikZ n dS             H r r r H r r r   (6.14) 

 
or 
 

    1 1 1ˆ ( ) ( , ) ( ) ( , ) ( ) ( , )t
tz dS ikZ dS

 

           E r r r M r r r J r r r    

 1 1( ) ( , ) ( ) ( , ) 0 ,
a b

a b

S S f

S S

ikZ dS ikZ dS D        J r r r J r r r r  . (6.15) 

 
We combine this with (I.2.12) to get 
 

  1 1 1( ) ( , ) ( ) ( , ) ( ) ( , )S t

S

ikZ dS ikZ dS


        J r r r M r r r J r r r    

  2
1 1( ) ( , ) ( ) ( , ) ,

a b

a b

r
S S f

S S

ikZ dS ikZ dS k Z D         J r r r J r r r H r r   (6.16) 

 
or, in terms of the scalar Green’s function (see (I.2.2) 
 

     ( ) ( , ) ( ) ( , )r
S S i i

S

g g dS      H r J r r r J r r r  

  ( ) ( , ) ( ) ( , )
a a

a

S S i i
S

g g dS       J r r r J r r r  

  ( ) ( , ) ( ) ( , )
b b

b

S S i i
S

g g dS       J r r r J r r r  

   ( ) ( , ) ( ) ( , )i i
g g dS 



     J r r r J r r r  
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     21
( ) ( , ) ( , ) ( ) ( , ) ( ) ( , )i ii i

g g k g g dS
ikZ   



                M r r r r r M r r r M r r r , 

 fDr . (6.17) 

 
 We proceed to evaluate this expression in the far field using (6.8) 
 

     ˆ~ ( ) ( , ) ( ) ( , )r
S S ii

S

ikr g g dS    H r J r r r J r r r  

   ˆ ˆ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
a a b b

a b

S S i S S ii i
S S

ikr g g dS ikr g g dS                J r r r J r r r J r r r J r r r  

   ˆ ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , ) ,i iikr g g dS ikYr r g g dS r 
 

                 
  

 J r r r r r M r r r r r  

  (6.18) 
 
where g is given by (6.7). To obtain this result, we used (6.10) and (6.11). We also used the fact 
that, on , the electric and magnetic current densities are transverse to the z-axis. As a 
consequence 
 

     ˆ ˆ, , i ii i
r r     
    J J M M M M . (6.19) 

 
Finally, 
 

     2ˆ ˆ ˆ ˆ( , ) ~ ( , ) ( , ) ~ ( , ) ,i i i i i ii
i

g ikg r ik g r k g r r r                   
r r r r r r r r . (6.20) 

 
 The far field expression (6.18) differs substantially from the one in (6.12). It may even be 
argued that (6.12) is simpler to compute. Equation (6.18) demonstrates, however, that, when it 
comes to the far field, we have an image theory in place. We proceed to show this. Define a 
current density 

iSJ  on the image iS  of S (about the xy-plane) as follows 

 

 
ˆ ˆ( ) ( ) ,

ˆ ˆ( ) ( ) ,
i

i

S i S

S i S

z z S

z z S

     
    

J r J r r

J r J r r
. (6.21) 

 
This statement is in agreement with how electric currents are imaged in the presnce of a perfectly 
conducting half-space with normal along the z-axis. We make similar definitions on the images 
of the rest of the surfaces in (6.18). For the magnetic current density, we define its image on i  

as follows 
 
 ˆ ˆ( ) ( ) ,

i iz z     M r M r r . (6.22) 
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We recall from (6.19) that the magnetic current density does not have a component along the z-
axis. 
 
 We examine the second term in the first integral in (6.18). By (6.7) 
 

     ˆe
( ) ( , ) ( ) e

4
i

ikr
ikr

S i Si i
S S

g dS dS
r


 

  rJ r r r J r . (6.23) 

 
Using (6.21) and the fact that 
 

 ˆ ˆi ir r   r r  (6.24) 

 
we get that 
 

   ˆe
( ) ( , ) ( )e

4
i

i

i

ikr
ikr

S i S i ii
S S

g dS dS
r


 

  rJ r r r J r . (6.25) 

 
This is an integral defined over the image of the surface S. It is worth writing the whole 
expression (6.18) out 
 

   ˆˆe
ˆ~ ( )e ( ) e

4
i

i

i

ikr
ikrr ikr
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S S

ik r dS dS
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  rrH r J r J r  
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ikr
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  rrJ r J r  

  
 

ˆˆe
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4
i

b b i

b b i

ikr
ikrikr

S i iS
S S

ik r dS dS
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  rrJ r J r

ˆˆe
ˆ ( ) e ( ) e

4
i

i

i

ikr
ikrikr

i iik r dS dS
r  

 



 

            
  rrJ r J r  

 ˆˆe
ˆ ˆ ( ) e ( )e ,

4
i

i

i

ikr
ikrikr

i iikY r r dS dS r
r  

 





                     
  rrM r M r . (6.26) 

 
Thus, we have an expression for the far field in terms of integrals over the surfaces S, aS , bS ,  
and their images about the xy-plane. We note that there is no integral over . 
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CHAPTER 3 
MONOPOLE AS AN EXTENSION OF THE CENTER CONDUCTOR 
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1. INTRODUCTION 
 
 In this chapter, we use results from Chapters 1 and 2 to develop a system of integral equations 
for geometries as in Figures 1.1 and 1.2. In these figures, the monopole is an extension of the 
center conductor of the coaxial transmission line. The diameter of the monopole in Figure 1.2 is 
not restricted in any way. It can be smaller than that of the center conductor or even greater than 
that of the outer conductor. Also, the height h of the monopole above ground is variable and it is 
allowed to become zero. Figure 1.1 is a special case of Figure 1.2. We proceed to derive integral 
equations for the geometry of Figure 1.2. Equation numbers from Chapters I and II are preceded 
by Roman numerals I and II, respectively. 

 
Figure 1.1. Monopole as extension of center conductor of coaxial line 

  

z

 
z=0

a

b



NAWCADPAX/TR-2013/115 
 

40 

 
Figure 1.2. A more general monopole geometry 

 
 For 0h  , we denote the surface of the structure in the upper-half space ( 0z  ) by S. If 0h 
, then we consider the part that lies on the xy-plane as part of the inner conductor aS . We first 

consider the case 0h  . 
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2. CENTER CONDUCTOR EXTENDING ABOVE THE PLANE ( 0h  ) 
 
 The unknowns are given in (I.4.6)-(I.4.9). The currents SJ  and 

aSJ  must be equal on the xy-

plane. The integral equations are given by (I.5.2), (I.5.6), (I.7.1), and (I.7.2). 
 
 If the coaxial line is to be terminated, as in Figure 2, then we have two additional unknowns 
and they are given by (II.2.1). The integral equations are given by (II.3.1), (II.3.2), and (II.4.1) 
through (II.4.4). 
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3. CENTER CONDUCTOR EXTENDING TO THE PLANE ( 0h  ) 
 
 The unknowns and integral equations are as in the previous section. 
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4. REMARKS 
 
 We must make sure that at the point ( , ,0)a  r , integral equations (I.5.2) and (I.7.1) give 
the same answer. These equations are 
 

 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

n g dS g dS g dS


            
  
  J r r r J r r r J r r r  

     1
ˆ ( ) ( , ) ( ) ( , )    ,   

2S S i Si
S

n g g dS S           J r r r J r r r J r r . (4.1) 

 
and 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )
b

b b i i
S

n g g dS       J r r r J r r r  

 
1

ˆ2 ( ) ( , ) ( ) ,
2 a an g dS S



        J r r r J r r . (4.2) 

 
 If ( , ,0)a  r , these equations become 
 

 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

g dS g dS g dS



            
  
  J r r r J r r r J r r r  

     1
ˆ ( ) ( , ) ( ) ( , ) , ( , , 0)

2S S Si
S

g g dS a             J r r r J r r r J r r  (4.3) 

 
and 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i
S

g g dS       J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )
b

b b i
S

g g dS       J r r r J r r r  

 
1

ˆ2 ( ) ( , ) ( ) , ( , ,0)
2 ag dS a



          J r r r J r r . (4.4) 

 
The ̂  -component of both equations is zero. From (4.3) 
 

  1
ˆ ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , )

2
a b

S a b

S S

z g dS g dS g dS



              
  
  J r J r r r J r r r J r r r  (4.5) 
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while from (4.4) 
 

 
1

ˆ ˆ ˆ( ) 2 ( ) ( , ) 2 ( ) ( , ) ( ) ( , )
2

a b

a a b

S S

z g dS z g dS g dS



               
  

  J r J r r r J r r r J r r r . 

  (4.6) 
 
From these two 
 
  ˆ ˆ ( ) , ( , ,0)S a a          J r J r r . (4.7) 

 
For the z-component, we get from (4.3) that 
 

  1
ˆˆ 2 ( ) ( , )

2 S S

S

z g dS      J r J r r r  

 ˆ2 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

a b

S S

g dS g dS g dS



            
  
  J r r r J r r r J r r r  (4.8) 

 
while from (4.4) 
 

    1
ˆ ˆˆ 2 ( ) ( , ) 2 ( ) ( , )

2 az g dS g dS 
 

               J r J r r r J r r r  

 
( , ) ( , )

ˆˆ2 ( ) 0
g g

z dS
z



 
 

          


r r r r
J r . (4.9) 

 
With this last result, we can write for (4.8) 
 

   ˆˆ 4 ( ) ( , ) ( ) ( , ) ( ) ( , )
a b

S a b S

S S S

z g dS g dS g dS
               
  
  J r J r r r J r r r J r r r . 

  (4.10) 
 
From (I.8.4) 
 

 ˆ ˆ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ,
a b

a b S

S S S

g dS g dS g dS 
                
  
  J r J r r r J r r r J r r r  

 ( , ,0)a  r . (4.11) 
 
From the last two 
 
   ˆˆ 4 ( ) , ( , ,0)Sz a        J r J r r . (4.12) 
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But ˆ ( )  J r  is the normal component of an electric current density on a perfect conductor 

and, hence, it must be zero. We conclude then that 
 
  ˆ 0 , ( , ,0)Sz a     J r r . (4.13) 
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PART 2 
INTEGRAL EQUATIONS FOR THE FIELDS OF A COAXIAL LINE RADIATING 

INTO A HALF-SPACE 
 
 

ABSTRACT 
 
 This is the second Part in a report on the formulation of the problem of radiation of a coaxial 
line into a half-space in terms of BIEs. In it, we use the results of Part 1 to derive BIEs for the 
fields of a coaxial line radiating into an otherwise empty half-space. The relationship of 
wavelength to the radii of the line is such that the input wave is a TEM wave. We take advantage 
of the circular symmetry of the line to reduce the vector integral equations to three scalar 
equations. The unknown electric current densities on the walls of the line are expressed as 
infinite series in the natural modes of the line, the coefficients of the modes being the unknowns. 
We point out that any of the three integral equations can be solved numerically using the method 
of weighted residuals. This method results in an infinite system of linear equations with an 
infinite number of unknowns. The actual solution of a truncated version of such a system will be 
given in Part 3 of this report. We conclude by deriving expressions for the far fields in the half-
space in which the coaxial line radiates. 
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1. INTRODUCTION 
 
 We use here the integral equations developed in Part 1 to determine the fields of the structure 
in Figure 1.1: a coaxial transmission line, terminating in a ground plane and radiating over the 
upper-half space. All surfaces are perfectly conducting. The ground plane is infinite and the 
coaxial line extends to infinity in the lower-half space. The inner and outer radii of the 
transmission line are a and b, respectively. We assume that the line supports only a TEM wave. 
For this, it is sufficient that (references 1 and 2) 
 

 1
2

a b
k


  (1.1) 

 
where k is the wavenumber of the time-harmonic ( e i t ) electromagnetic wave in the line. 

 
Figure 1.1. The semi-infinite coaxial line of inner radius a and outer radius b is fed at 

z   . At 0z  , it opens up into a half-space, its outer conductor becoming a 
plane that extends to infinity. All surfaces are perfectly conducting. 

 
 The excitation of the line occurs at z    and results in a TEM wave with fields 
 

 
e e

ˆ ˆ( ) , ( )

ln ln

ikz ikz
g gV YV

b b

a a

 
 

 

 
   
   
   

E r H r . (1.2) 

 
where V is the voltage of the inner conductor with respect to the outer, and Y is the free-space 
admittance. We use cylindrical coordinates ( , , z  ). Since the line is not infinite, we have also 

an induced wave in the line with fields { ,i iE H }. The total fields { ,t tE H } in the coaxial line are 
the sum of the generator and induced fields 
 
 ,t g i t g i   E E E H H H . (1.3) 
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In the upper-half space we have radiated fields { ,r rE H }. We proceed to determine both sets of 
fields by first deriving integral equations and then solving them numerically. 
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2. FIELDS INDUCED BY COAXIAL LINE 
 
 Since the generator fields are independent of the angular coordinate, and since the geometry 
has circular symmetry, we expect the induced fields to be independent of . Thus, according to 
Appendix A, we can have a TEM wave traveling down the line, given by 
 

 
e e

ˆ ˆ( ) , ( )

ln ln

ikz ikz
i iV YV

b b

a a

 
 

 

  
   
   
   

E r H r . (2.1) 

 
In addition, we can have the zeroth-order mode of a TM wave, given by (A3.23), (A3.24), and 
(A3.27) in Appendix A 
 

 02
0 0 0( , , ) e ( )ni zTM z

ne n nE z        (2.2) 

 0
0 0 0( , , ) e ( )ni zTM

ne n nE z i         (2.3) 

 0
0 0( , , ) e ( )ni zTM

ne nH z ikY        (2.4) 

 
with 0n  a root of the equation 

 
 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) 0 , 1, 2,...n n n nJ a Y b J b Y a n       (2.5) 

 
and 
 

 
2 22 2

0 0
0

2 22 2
0 0

,

,

n n
n

n n

k k

i k k

 


 

   
  

 (2.6) 

 
while 
 

 0 0
0 0 0 0 0

0 0

( )
( ) ( ) ( )

( )
n

n n n
n

J a
J Y

Y a


     


  . (2.7) 

 
Similarly, we can have the zeroth-order mode of the TE wave (see Appendix A) 
 

 02
0 0 0( , , ) e ( )ni zTE z

ne n nH z R      (2.8) 

 0
0 0 0( , , ) e ( )ni zTE

ne n nH z i R       (2.9) 

 0
0 0( , , ) e ( )ni zTE

ne nE z ikZ R      (2.10) 
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with 0n  a root of the equation 

 

 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) 0 , 1,2,...n n n nJ a Y b J b Y a n          (2.11) 

 
and 
 

 
2 22 2

0 0
0

2 22 2
0 0

,

,

n n
n

n n

k k

i k k

 


 

   
  

 (2.12) 

 
while 
 

 0 0
0 0 0 0 0

0 0

( )
( ) ( ) ( )

( )

n
n n n

n

J a
R J Y

Y a


    




 


. (2.13) 

 
The first few roots of (2.5) and (2.11) are given in (reference 3) for selected values of /b a  . 

Also, Mathematica (reference 4) has special subroutines that compute the roots of these 
equations. 
 
 From the above, we can write that the magnetic field induced in the coaxial line is 
 

 
e

ˆ( )

ln

ikz
i YV

A
b

a






 
 
 
 

H r  

  0 0 2
0 0 0 0 0

1

ˆˆ ˆe ( ) e ( ) ( )n ni z i z
n n n n n n n

n

V B ikY C i R R z        




        (2.14) 

 
where A, nB , and nC  are unknown constants. The constant A is dimensionless, nB  has dimension 

of length, and nC  has dimension of length-mhos. 
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3. INTEGRAL EQUATIONS AND ELECTRIC CURRENT DENSITIES 
 
 From (5.6), (7.1), and (7.2) of Chapter 1 of Part 1, the integral equations for the present 
problem are 
 

 ˆ ( ) ( , ) ( ) ( , ) ( ) ,
a b

a b

S S

z g dS g dS  
           
  
 J r r r J r r r J r r  (3.1) 

and 
 

   ˆ ( ) ( , ) ( ) ( , )
a

a a i i
S

n g g dS       J r r r J r r r  

   ˆ ( ) ( , ) ( ) ( , )
b

b b i i
S

n g g dS       J r r r J r r r  

 
( ) ,1

ˆ2 ( ) ( , )
( ) ,2

a a

b b

S
n g dS

S


 
       


J r r
J r r r

J r r
. (3.2) 

 
The current densities in these equations are defined in (4.6), (4.7), and (4.8) of Chapter 1 of Part 
1. 
 
 ˆ ˆ ˆ( ) ( ) , , ( ) ( ) , , ( ) ( ) ,t t t

a a b bn S n S z          J r H r r J r H r r J r H r r  (3.3) 

 
where tH  is defined in (1.3). 
 
 In terms of the fields in (1.2) and (2.14), we have 
 

  0 0 0
1

ˆ ˆ ˆ( ) (1 ) ( ) ( )

ln
n n n n n

n

YV
A iV B kY C R

b

a

       






    
 
 
 

J r  (3.4) 

 
while 
 

    0 0 2
0 0 0

1

ˆˆ ˆ( ) e e e ( ) e ( )

ln

n ni z i zikz ikz
a n n n n n

n

YV
A z V B ikY a z C R a

b
a

a

   


 



   
 
 
 

J r  (3.5) 

 
and 
 

    0 0 2
0 0 0

1

ˆˆ ˆ( ) e e e ( ) e ( )

ln

n ni z i zikz ikz
b n n n n n

n

YV
A z V B ikY b z C R b

b
b

a

   


 



    
 
 
 

J r  (3.6) 
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But from (2.7) 
 

 0 0
0 0 0 0 0 0

0 0

( )
( ) ( ) ( )

( )
n

n n n n
n

J a
a J a Y a

Y a


   


     
 

 

 0
0 0 0 0 0 0 0 0

0 0 0 0

2
( ) ( ) ( ) ( )

( ) ( )
n

n n n n
n n

J a Y a J a Y a
Y a aY a


   

  
       

 (3.7) 

 
where, above, we made use of the Wronskian relationship for Bessel functions (reference 3). 
Similarly, from (2.13) 
 

 0 0 0 0 0 0 0 0 0

0 0 0 0 0

1 2
( ) ( ) ( ) ( ) ( )

( ) ( )
n n n n n

n n n

R a J a Y a J a Y a
Y a aY a

   
  

       
. (3.8) 

 
With these two results, we can write for (3.5) 
 

 
    0 00

1 0 0 1 0

2
ˆˆ ˆ( ) e e e e

ln ( ) ( )
n ni z i zikz ikz n n n

a
n n n

ikYB CYV V
A z z

a a Y a Y a
 


   


 



 
    

 
J r  (3.9) 

 
where /b a  . 
 
 From (3.15) and (4.10) of (reference 1), we can write (2.7) and (2.13) in the form 
 

 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0

( ) ( )
( ) ( ) ( ) , ( ) ( ) ( )

( ) ( )

n n
n n n n n n

n n

J b J b
J Y R J Y

Y b Y b

 
          

 


   


. (3.10) 

 
Proceeding as above, we find that 
 

 0 0
0 0 0 1 0

2 2
( ) , ( )

( ) ( )n n
n n n

b R b
bY b bY b


   

      (3.11) 

 
and 
 

 
    0 00

1 0 0 1 0

2
ˆˆ ˆ( ) e e e e

ln ( ) ( )
n ni z i zikz ikz n n n

b
n n n

ikYB CYV V
A z z

b b Y b Y b
 


   


 



 
     

 
J r . (3.12) 

 
In the next section, we substitute the current densities in the integral equations and resolve the 
latter into their components. 
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4. SCALAR FORM OF INTEGRAL EQUATIONS 
 
 We substitute next expressions (3.4), (3.9), and (3.12) for the electric current densities in the 
integral equations (3.1) and (3.2). First, we write 
 
 ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )a a a b b bu v v h z v h z          J r r r J r r r J r r r  (4.1) 

 
where 
 

 
  0 0 0

1 1

( ) (1 ) ( ) , ( ) ( )
ln n n n n n

n n

YV
u A ikYV B v iV C R    

 

 

 

      r r  (4.2) 

 
   0 00

1 11 0 0 0

2 2
( ) e , ( ) e e e

( ) ln ( )
n ni z i zikz ikzn n n

a a
n nn n

V C YV ikYV B
v h A

a Y a a a Y a
 

    

 
 

 

    r r  (4.3) 

 
   0 00

1 11 0 0 0

2 2
( ) e , ( ) e e e

( ) ln ( )
n ni z i zikz ikzn n n

b b
n nn n

V C YV ikYV B
v h A

b Y b b b Y b
 

    

 
 

 

      r r . 

  (4.4) 
 
 Compute 
 

   ( , )
ˆ ˆ( ) ( , ) ( ) ( , ) ( )a a a

g
z g g z

z





     

r r
J r r r J r r r J r  

    ( , )
ˆ ˆˆ ˆ ˆ( ) ( ) ( , ) ( ) ( )a a a a

g
v h z g z v h z

z

 



    

r r
r r r r r r  

 
( , )

ˆ( ) ( ) ( , )a a t

g
v h g

z

 



  

r r
r r r r  (4.5) 

 
where the subscript t stands for “transverse to the z-axis”. A similar expression exists for the 
outer conductor. Substitute in (3.1) 
 

 
( , ) ( , )

ˆ ˆ( ) ( ) ( , ) ( ) ( ) ( , )
a b

a a t b b t

S S

g g
v h g dS v h g dS

z z

  
 

                
r r r r

r r r r r r r r  

 ˆ ˆ( ) ( ) ,u v         r r r . (4.6) 

 
This is the first integral equation in terms of scalar functions. 
 
 Compute 
 
  ( ) ( , ) ( ) ( , )a a i i

g g   J r r r J r r r  

    ˆ ˆˆ ˆ( ) ( ) ( , ) ( ) ( ) ( , )a a a a i i
v h z g v h z g         r r r r r r r r  

     ˆ ˆ ˆ( ) ( , ) ( , ) ( ) ( , ) ( , )a i a ii
v g g h z g g          r r r r r r r r r r  
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  ( , ) ( , )( , ) ( , )
ˆ ˆˆ ˆ ˆ( ) ( ) ( , ) ( , )i i

a a i

g gg g
v z z h z g g

z z

   
   

             
  

r r r rr r r r
r r r r r r  

 
( , )( , )

ˆ ˆ ˆ( ) ( ) ( , )ND
a a D

gg
v z h z g

z




 
      

 

r rr r
r r r r  (4.7) 

 
where 
 
 ( , ) ( , ) ( , ) , ( , ) ( , ) ( , )D i N ig g g g g g        r r r r r r r r r r r r  (4.8) 

 
the Dirichlet and Neumann Green’s functions for the 0z   plane. Equation (4.7) is also valid 
when the subscript a is replaced by b. We also compute 
 
  ˆ ˆ( ) ( , ) ( ) ( ) ( , )g u v g       J r r r r r r r  

   ( , ) 1 ( , ) ( , )
ˆ ˆ ˆ( ) ( ) ( ) ( )

g g g
v u z u v

z   
   

   
   

    
 

r r r r r r
r r r r . (4.9) 

 
 Substitute these expressions in the first of (3.2) ( ˆˆ,aS n    r ) 

 

 
( , )( , )

ˆ ˆ ˆ ˆ( ) ( ) ( , )
a

ND
a a D

S

gg
v z h z g dS

z


 

 
         

  


r rr r
r r r r  

 
( , )( , )

ˆ ˆ ˆ ˆ( ) ( ) ( , )
b

ND
b b D

S

gg
v z h z g dS

z


 

 
         

  


r rr r
r r r r  

   ( , ) 1 ( , ) ( , )
ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( )

g g g
v u z u v dS

z   


    
   

          
  


r r r r r r

r r r r  

  1
ˆ ˆ( ) ( ) ,

2 a a av h z S     r r r . (4.10) 

 
Since 
 
 ˆ ˆ ˆ ˆ ˆ ˆcos sin , sin cosx y x y           (4.11) 
 
we can perform the vector operations in (4.10) to get, for the   -component, 
 

 
( , ) ( , )

( ) ( )
a b

N N
a b

S S

g g
v dS v dS

 
 

 
  

r r r r
r r  

 
1 ( , ) ( , ) 1

2 ( ) ( ) ( ) ,
2 a a

g g
u v dS v S 



 
  

        
 


r r r r
r r r r  (4.12) 
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and for the z-component 
 

 
( , )

ˆ( )sin( ) ( ) ( , )
a

D
a a D

S

g
v h g dS

z


  


       

 
r r

r r r r  

 
( , )

ˆ( )sin( ) ( ) ( , )
b

D
b b D

S

g
v h g dS

z


  


       

 
r r

r r r r  

   ( , ) 1
2 sin( ) ( ) cos( ) ( ) ( ) ,

2 a a

g
v u dS h S

z 


   



        

r r
r r r r . (4.13) 

 
Similar expression is obtained from the second of (3.2) ( ˆˆ,bS n     r ) 

 

 
( , ) ( , )

( ) ( )
a b

N N
a b

S S

g g
v dS v dS

 
 

 
 

r r r r
r r  

 
1 ( , ) ( , ) 1

2 ( ) ( ) ( ) ,
2 b b

g g
u v dS v S 



 
  

        
 


r r r r
r r r r  (4.14) 

 
and 
 

 
( , )

ˆ( )sin( ) ( ) ( , )
a

D
a a D

S

g
v h g dS

z


  


      

 
r r

r r r r  

 
( , )

ˆ( )sin( ) ( ) ( , )
b

D
b b D

S

g
v h g dS

z


  


       

 
r r

r r r r  

   ( , ) 1
2 sin( ) ( ) cos( ) ( ) ( ) ,

2 b b

g
v u dS h S

z 


   



        

r r
r r r r . (4.15) 

 
 We return to (4.6) and we write it in terms of its components 
 

 
( , )

ˆ( ) sin( ) ( ) ( , )
a

a a t

S

g
v h g dS

z

   


        
r r

r r r r  

 
( , )

ˆ( ) sin( ) ( ) ( , ) ( ) ,
b

b b t

S

g
v h g dS u

z 
    


            

r r
r r r r r r  (4.16) 

 
and 
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( , )

ˆ( ) cos( ) ( ) ( , )
a

a a t

S

g
v h g dS

z

   


       
r r

r r r r  

 
( , )

ˆ( ) cos( ) ( ) ( , ) ( ) ,
b

b b t

S

g
v h g dS v

z 
    


            

r r
r r r r r r . (4.17) 

 
The system of integral equations is given by (4.12) through (4.17). 
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5. SIMPLIFICATION OF SCALAR INTEGRAL EQUATIONS 
 
 We recall the definition of the scalar Green’s function 
 

 
1
22 2 2e

( , ) , 2 cos( ) ( )
4

ikR

g R z z
R

    




                r r r r . (5.1) 

 
We observe that 
 

 
2 2( , ) ( , )

0
g g

d d
   

 

  
 

  

 

 
  

 
r r r r

. (5.2) 

 
Since the various current density functions are independent of , the second term in the two 
integrals in (4.17) is zero; thus, we can write 
 

 
( , ) ( , )

( ) cos( ) ( ) cos( ) ( ) ,
a b

a b

S S

g g
v dS v dS v

z z 
     

 
 

        
r r r r

r r r r . (5.3) 

 
This statement makes good physical sense because it says that the angular linear current density 
on  depends only on the angular linear current densities on the walls of the coaxial line and not 
on the z-directed ones. 
 
 We encounter the same kind of term in (4.12), and we rewrite that expression as 
 

 
( , ) ( , ) ( , ) 1

( ) ( ) 2 ( ) ( ) ,
2

a b

N N
a b a a

S S

g g g
v dS v dS v dS v S



  
  

  
       

r r r r r r
r r r r r . 

  (5.4) 
 
A similar expression results from (4.14) 
 

 
( , ) ( , ) ( , ) 1

( ) ( ) 2 ( ) ( ) ,
2

a b

N N
a b b b

S S

g g g
v dS v dS v dS v S



  
  

  
      

r r r r r r
r r r r r . (5.5) 

 
 From (5.1), we see that the scalar Green’s function in cylindrical coordinates is an even 
function of     about zero. Thus, its Fourier series contains only cosine terms; in fact 
(reference 3, p. 487) 
 

 
2 2

0 2 2
0

1
( , ) cos ( ) ( ) ( ) e

4
z z k

l l l
l

d
g l J J

k

      
 

    



    


 r r  (5.6) 

 
where l  is the Neumann symbol 
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 0 1 ; 2 , 1,2,...l l     (5.7) 

 
Because of this, the terms in (4.16) containing the sine function dropout and we get 
 

 
( , ) ( , )

( ) ( ) ( ) ,
a b

a b

S S

g g
h dS h dS u

  
 

 
   

  
r r r r

r r r r . (5.8) 

 
Again, this statement makes good physical sense because it says that the radial component of the 
linear current density on  depends only on the z-component of the linear current density on the 
walls of the coaxial line. We can visualize the current coming up in the inner conductor, 
displacing itself radially at the termination of the line, and returning via the outer conductor. 
Similarly, from (4.13) we write 
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r r
r r r  (5.9) 

 
and from (4.15) 
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r r r r

r r  

 
( , ) 1

2 ( ) cos( ) ( ) ,
2 b b

g
u dS h S

z


 



     

r r
r r r . (5.10) 

 
 From definitions (4.2), (4.3), and (4.4), we see that the last three equations involve both 
unknown and known quantities. By contrast, (5.3), (5.4), and (5.5) involve only unknown 
quantities, i.e., there is no generator that excites these circumferential currents. Indeed, a quick 
examination of the geometry of our problem and the way we excite the coaxial line reveal that 
there is no reason for these currents to exist; therefore, in (4.2). (4.3), and (4.4), we set all 0nC 
. From (2.14), and the discussion in Section 2, we conclude that the arrangement we have 
supports a TEM and a TM wave, but it does not support a TE wave. 
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6. SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS 
 
 The system of integral equations consists of (5.8), (5.9), and (5.10). The three scalar functions 
that appear in them are defined in (4.2), (4.3), and (4.4) and involve an infinite number of 
unknowns. We can use the method of weighted residuals (reference 6) to convert each equation 
into an infinite system of linear algebraic equations. Thus, we will have three separate systems of 
equations, each involving the same unknowns. If we truncate the three systems into finite 
systems of 1N   equations in 1N   unknowns, then, as N tends to infinity, the solution for each 
system must converge to the same value; thus, we only need to numerically solve one of the 
three integral equations. We chose to deal with (5.8). We will do this in Part 3 of this report. In 
the next section, we derive far-field expressions. 
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7. FAR-FIELD REPRESENTATIONS 
 
 We derive a far-field expression for the geometry of this section. From Green’s second 
identity (reference 7, p. 509), we have that in the upper-half space 
 

   2 2( ) ( , ) ( ) ( , )r r

D

dV


        H r Γ r r H r Γ r r  

   2 2

0

ˆ ˆ( ) ( , ) ( ) ( , )r r

z

n n dS


         H r Γ r r H r Γ r r  (7.1) 

 
where rH  denotes the radiated magnetic field (total magnetic field in upper-half space) and 2Γ  
is the second-kind Green’s dyadic. The latter satisfies the differential equation 
 
      2

2 2, , ( , ) ( , )i ik ik         Γ r r Γ r r r r r r   (7.2) 

 
where   is the identity dyadic and i  its image about the 0z  , and the boundary condition 

 
  2ˆ , , 0z z  Γ r r 0 . (7.3) 

 
Following standard procedures, we can show that 
 

   2 2( ) ( , ) ( ) ( , )r r

D

dV


        H r Γ r r H r Γ r r  

 2( ) ( ) , 0r rik k Y z        H r E r . (7.4) 
 
Also, 
 

   2 2
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z

n ikY n dS


        H r Γ r r E r Γ r r  

  2 2ˆ ( ) ( , ) ( ) ( , )rikY z dS ikY dS
 

          E r Γ r r M r Γ r r . (7.5) 

 
 From the last two equations, we have that 
 

 2( ) ( ) ( , ) , 0r i
dS z

k 


    E r M r Γ r r . (7.6) 

 
The dyadic in this expression is given by 
 
  2 ( , ) ( , ) ( , )i iik g g     Γ r r r r Ι r r Ι  (7.7) 
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Where 
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With this, we have that 
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which we substitute in (7.6) to get 
 

 ( ) 2 ( ) ( , ) , 0r g dS z


    E r M r r r . (7.10) 

 
Similarly, from (2.13) of Chapter 1 of Part 1, we have 
 

   2
( ) ( , ) 2 ( ) ( , ) , 0r g dS i kY g dS z

ikZ  
 

       H r M r r r M r r r . (7.11) 

 
This equation can also be obtained by applying one of Maxwell’s equations (Ampère’s law) to 
(7.10). 
 
 In the far field ( r    ) 
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Using this in the previous two equations, we get 
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and 
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 rH r M r . (7.14) 

 
These are the far-field representations. 
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 We will attempt to compute the integral in these expressions. From (1.2) and (2.14) 
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We substitute in the integral 
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For the second integral, we write 
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and substitute in (7.16) 
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For the first of the last two integrals, we write 
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while for the second 
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We substitute the last two equations in (7.18) and use (2.6) 
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 From this and (7.13) 
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while from (7.14) 
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where, in these two expressions, we changed from primed to unprimed coordinates. These are 
the far-field representations of the electric and the magnetic field in terms of the unknown 
coefficients of the current density expansions. 
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8. CONCLUSIONS 
 
 For a coaxial line, as shown in Figure 1.1, we derived three BIEs. We also wrote the unknown 
current densities as expansions in the modes of the coaxial line. We concluded in Section 6 that 
we need deal with only one of the integral equations to numerically determine the coefficients of 
these expansions. This will be explicitly done in the parts that follow. In Section 7, we present 
the expansions of the far fields. 
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APPENDIX: THE ELECTROMAGNETIC FIELDS OF A COAXIAL TRANSMISSION LINE 
 

A1. INTRODUCTION 
 

 In this note, we develop the eigenvalues and eigenfunctions for an infinite coaxial line. The 
inner and outer walls of the line are perfectly conducting, with radii a and b, respectively (see 
Figure A1). The axis of the line is the z-axis. Derivations can be found in many books. We have 
consulted Jones (reference 8), Stratton (reference 9), and Tai (reference 10). The time 
dependence of the electromagnetic fields is +it. Thus, Maxwell’s equations are 
 

 1, , , /ikZ ikY k Z Y          E H H E  (A1.1) 

 
where  and  are the constitutive parameters of the space between the two conductors. On Ca 
and Cb, the tangential component of the electric field is zero 
 
 n̂ E 0 . (A1.2) 

 
 

Figure A1. Cross section of coaxial transmission line. Ca and Cb represent the inner and outer 
circles. The region between the two conductors is denoted by D. 

 
A2. GENERATION OF WAVES IN THE COAXIAL LINE 
 
 It is well known (reference 9) that, in a source-free region, electromagnetic fields can be 
expressed in terms of two scalar functions. These functions are components of Hertz vectors of 
arbitrary direction. In this case, we take the direction to be that of the z-axis and write 
 
 ˆ ˆ( ) ( ) , ( ) ( )z z  r r r r   (A2.1) 
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where 
 
 2 2 2 2( ) ( ) 0, ( ) ( ) 0k k        r r r r . (A2.2) 
 
The fields generated by these Hertzian potentials are (reference 9) 
 
 ˆ ˆ ˆ ˆ( ) [ ( ) ] [ ( ) ] , ( ) [ ( ) ] [ ( ) ]z ikZ z z ikY z          E r r r H r r r . (A2.3) 
 
 
A3. TRANSVERSE MAGNETIC WAVES 

 
 If in (A2.1) we let ( ) 0 r , we find that the magnetic field does not have a component 
along the z-axis. The z-component of the electric field is given by 
 

 
2

2
2

( )
ˆ ˆ( ) [ ( ) ] ( )TM zE z z k

z

  


   
r

r r r . (A3.1) 

 
From (A1.2), we have that TM zE  must be equal to zero when a   or b  . For this, it is 
sufficient that 
 
 ( , , ) ( , , ) 0a z b z     . (A3.2) 
 
For, if this is the case, it follows from the Hugoniot-Hadamard theorem (reference 11) that the 
second derivative with respect to z is also zero there. Thus, from (A2.2) and (A3.2), we have the 
boundary-value problem 
 
 2 2( ) ( ) 0, ( , , ) ( , , ) 0k a z b z         r r . (A3.3) 
 
 We use cylindrical coordinates ( , , )z   and write 
 
 ( , , ) ( , ) ( )z f h z     . (A3.4) 
 
Substitution in (A3.3) gives 
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( , ) ( )
t f h z

k
f h z

 


 


     (A3.5) 

 
where t  is the transverse component of the Laplacian and 2  is a constant that will be 

determined from the boundary condition. Expressing the Laplacian in cylindrical coordinates, we 
have 
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f f

f
       
  

 
   

 
. (A3.6)
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Writing, 
 
 ( , ) ( ) ( )f        (A3.7) 
 
we obtain 
 

 2 2 2

( )

( )

( ) ( )

d d

d d
m

  
    
   

 
         (A3.8) 

 
where the constant m is an integer since the solution in the angular direction has period 2. The 
function  is then of the form 
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 . (A3.9) 

 
 The remaining equation in (A3.8) is Bessel’s equation 
 

  2 2 2( )
( ) 0

d d
m

d d

      
 
 

   
 

 (A3.10) 

 
and its solution is the linear combination of a Bessel and a Neumann function 
 
 ( ) ( ) ( )m m m m m m ma J b Y       . (A3.11) 

 
These are the functions that also must satisfy the boundary conditions 
 
 ( ) ( ) 0m ma b   . (A3.12) 

 
This results in the homogeneous system of equations 
 

 
( ) ( ) 0

( ) ( ) 0
m m m m m m

m m m m m m

a J a b Y a

a J b b Y b

 
 

 
 

 (A3.13) 

 
which has non-trivial solutions only if its determinant is zero 
 
 ( ) ( ) ( ) ( ) 0m m m m m m m mJ a Y b J b Y a     . (A3.14) 

 
This is a transcendental equation with roots ,  1, 2,...mn n   . For these roots, the solutions of the 

system are 
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( ) ( )

( ) ( )
m mn m mn
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Y a Y b

 
 

    . (A3.15) 

 
For (A3.11) we can then write 
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   (A3.16) 

 
and for (A3.7) 
 
 ( , ) ( ) ( )e mn e

mn m
o o

f       . (A3.17) 

 
These functions are orthogonal, in the sense that 
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f f dS A f f dS        
 

   . (A3.18) 

 
They can also be orthonormalized. 
 
 Returning to (A3.5), we write 
 

 22( ) ( ) ( ) 0mnh z k h z     (A3.19) 

 
which has solutions 
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mnh z    (A3.20) 

 
where 
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. (A3.21) 

 
For the upper root, the solution with the plus sign represents a wave traveling along the negative 
z-axis while the one with the minus sign represents one that travels along the positive z-axis. For 
the lower, we have exponential decay along these directions. From (A3.4), (A3.17), and (A3.20), 
we can write, 
 
 ( , , ) e ( ) ( )mni z

e mn e
mn m

o o

z         . (A3.22) 
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 These are the eigenfunctions that comprise the z-component of the electric Hertz potential. 
From this we can construct the electromagnetic field according to (A2.3). Thus, the 
eigenfunctions for the z-component of the electric field are 
 

 2( , , ) e ( ) ( )mni zTM z
e mn mn e

mn m
o o

E z          (A3.23) 

 
while those for the - and  components 
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    . (A3.25) 

 
We note that the  component automatically satisfies the boundary conditions. For the 
magnetic field 
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and 
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   . (A3.27) 

 
Again, we see that (A3.26) satisfies the boundary condition that the component of the magnetic 
field normal to the perfectly conducting surfaces must be zero there. This condition follows from 
(A1.2). 
 
A4. TRANSVERSE ELECTRIC WAVES 

 
 If in (A2.1) we let ( ) 0 r , we find that the electric field does not have a component along 
the z-axis. The  -component of the electric field is given by 
 



NAWCADPAX/TR-2013/115 
 

72 

 
( )

( )TE E ikZ 



r

r . (A4.1) 

 
For (A1.2) to be satisfied, it is sufficient that the normal derivative of the magnetic Hertz 
potential on the two conductors is zero; thus, we have the boundary-value problem 
 

 2 2 ( , , ) ( , , )
( ) ( ) 0, 0

a z b z
k

a b

    
 

    r r . (A4.2) 

 
 Proceeding as in the TM case, we write 
 
 ( , , ) ( , ) ( )z g h z      (A4.3) 
 
and obtain 
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where g satisfies 
 

 
2

2 2
2

( , ) 0
g g

g
       
  

 
   

 
. (A4.5) 

 
Letting 
 
 ( , ) ( ) ( )g R      (A4.6) 
 
where  is defined in (A3.9), we get that R satisfies Bessel’s equation (A3.10) with  replaced 
by ; thus, 
 
 ( ) ( ) ( )m m m m m m mR c J d Y      . (A4.7) 

 
From the boundary condition (A4.2), 
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and from this we get the condition 
 

 ( ) ( ) ( ) ( ) 0m m m m m m m mJ a Y b J b Y a        . (A4.9) 
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This is a transcendental equation with roots ,  1, 2,...mn n   . For these roots, the solutions of the 

system are 
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 (A4.10) 

 
and for (A4.7) we write 
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For (A4.6) then we write 
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These functions are orthogonal in the sense of (A3.18) and can be orthonormalized. 
 
 As with (A3.19), the solutions of h in (A4.4) are given by 
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 For the eigenfunctions of the magnetic potential in (A4.3), we can write 
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From (A3.23), the corresponding functions for the electromagnetic fields are 
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We note that all boundary conditions are satisfied. 
 
A5. TRANSVERSE ELECTROMAGNETIC WAVES 

 
 In this case, the z-component of the electric and magnetic fields is zero. From (A3.1) and 
(A4.16), this implies that the fields have a e ikz  dependence. From (A2.3), the part of the electric 
field due to the electric Hertz potential is 
 

 2ˆ ˆ ˆ( ) [ ( ) ] [ ( ) ] ( ) [ ( )]TEM z z z
z

   


          E r r r r r  

 
2

2
2

( ) ( )
ˆ ( ) tz k
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r r
r . (A5.1) 

 
Since the z-component is zero, we have that 
 

 
( )

( )TEM
t z




     
r

E r . (A5.2) 

 
Write 
 
 ( ) e ( ) , ( , )TEM ikz x y   E r e   . (A5.3) 
 
From this 
 
  0 ( ) e ( ) e ( ) e ( )TEM ikz ikz ikz                   E r e e e    (A5.4) 
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so that 
 
 ( ) 0  e r . (A5.5) 
Since in (A5.2) the electric field is expressible in terms of a scalar function, we can let that 
function be e ( )ikz V   , so that we can write for (A5.2) 
 
 ( ) ( )V  e   . (A5.6) 
 
From (A5.5) 
 
 2 ( ) 0V   . (A5.7) 
 
 The general solution of this is 
 
 ( ) ( ) ( )e m e

m m
o o

V U      (A5.8) 

 
where the angular function is defined in (A3.9) while the radial one satisfies the differential 
equation 
 

 2 2( ) ( ) ( ) 0m m mU U m U        . (A5.9) 

 
This is an Euler-type equation with solutions 
 
 0 0 0( ) ln ; ( ) , 1, 2,...m m

m m mU A B U A B m          . (A5.10) 

 
 If we reconstruct the angular component of the electric field using these solutions, we find 
that, for the boundary conditions to be satisfied, we must have 
 

 
0

, 1, 2,...
0

m m
m m

m m
m m

A a B a
m

A b B b





 


 
 . (A5.11) 

 
This system has only the trivial solution unless a b , a case of no interest; thus, 
 
 0 , 1, 2,...m mA B m    (A5.12) 

 
and, for the potential, we get the simple expression 
 
 0 0( ) lnV A B   . (A5.13) 

 
The unknown constants are determined by the potential difference between the two conductors. 
For example, if the inner conductor is at potential V and the outer at zero, then the boundary 
conditions give 
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 0 0

0 0

ln

ln 0

A a B V

A b B

 
 

 (A5.14) 

 
from which we determine non-trivial values for the constants. 
 
 If we follow the same line of reasoning using the magnetic Hertz vector, we will find that we 
must have the radial derivative of the potential equal to zero on the two conductors. This will 
result in (A5.12) being true, but also that 0 0A  ; thus, the potential will be equal to a constant (

0B ) and the fields will be equal to zero. We see then that, in the TEM case, the fields are 

determined from a single scalar function, the electric potential. 
 
A7. CONCLUSION 

 
 We have derived the eigenfunctions that may be present in the space between the two perfect 
conductors of a coaxial line. The TEM mode will always be present, irrespective of frequency. 
The presence of other modes depends first and foremost on the feeding arrangement. If the fields 
of the source are independent of the angular direction, so will the total fields. If not, then a 
number of modes is possible, depending on the dimensions of the inner and outer conductor. We 
note that both in the TM and the TE case we have a term (m = 0) independent of . 
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PART 3 
NUMERICAL SOLUTION OF INTEGRAL EQUATION FOR COAXIAL LINE 

 
 

ABSTRACT 
 
 This is the third part of the report on the formulation of the problem of radiation of a coaxial 
line into a half-space in terms of BIEs. In Part 2, we showed that the problem can be reduced to 
solving a single, scalar integral equation. Here, we convert the scalar integral equation into an 
infinite system of linear algebraic equations. We also express the coefficients of the system in 
terms of single integrals, and proceed to show how to compute them. 
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1. INTRODUCTION 
 
 We proceed with the numerical solution of the integral equations obtained in Part 2. The 
geometry is as in Figure 1.1. In Part 2, we found that the coefficients of the current density 
expansion can be determined by solving a single, scalar integral equation. In Section 2, we begin 
with the scalar integral equation, substitute in it the expansions for the unknown linear current 
densities and perform the two–dimensional integrations to end up with one equation in an infinite 
number of unknowns. The coefficients of the equation are Sommerfeld-type integrals. In Section 
3, we use the orthogonality properties of the expansion functions to generate an infinite system 
of linear algebraic equations. The coefficients of this system are integrals of four distinct forms. 
In Sections 4 through 7, we discuss how the integrals are computed using Mathematica 
(reference 1). In Appendix A, we evaluate analytically the integrals used in Section 3. 

 
Figure 1.1. The semi-infinite coaxial line of inner radius a and outer radius b is fed at 
z   . At 0z  , it opens up into a half-space, its outer conductor becoming a plane 

that extends to infinity. All surfaces are perfectly conducting. 
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2. INTEGRAL EQUATION 
 
 The integral equation is given by (5.8) of Part 2 and we repeat it here 
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and 
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1
( , ) cos ( ) ( , , , )

4 l l
l

g l F z z    






     r r  (2.5) 

 
with 
 

 
2 2

0 0 2 2
1 ; 2 , 1, 2,...; ( , , , ) ( ) ( ) e z z k

l l l l

d
l F z z J J

k

       


        


 . (2.6) 

 
 We want to accelerate the convergence of the integral in (2.6). To this end, we split the 
integral in two parts, a static part and the rest. From (2.6), the integral corresponding to the static 
Green’s function is 
 

 
0

( , , , ) ( ) ( ) e z z
l l lH z z J J d    

       (2.7) 

 
and what remains in (2.6) is 
 
 ( , , , ) ( , , , ) ( , , , )l l lG z z F z z H z z             
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 . (2.8) 

 
 For the integral equation in (2.1), we can then write 
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From (2.2), (2.3), and (2.4), the current densities are independent of the angular direction. We 
can then replace (2.9) by 
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 We deal with each of these integrals separately. For the second one, we use (2.3) and (2.7) to 
write 
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We require that 0z    so as to make the integrals in  converge absolutely and uniformly. 
This allows for interchanging operations; thus, 
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We re-write this as 
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In the second and fourth terms, the limits can be moved inside the integrals. The first and third 
are, by definition, Weber-Schafheitlin discontinuous integrals (reference 2, pp. 398-410). 
Dropping the limit notation, and thus having only one such integral, we have that (reference 2, p. 
404 and reference 3, p. 100) 
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We then have 
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 The fourth integral in (2.10) is the same as the second with a replaced by b and a reversal in 
sign because of (2.3) and (2.4); thus, we have 
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 We turn to the first integral in (2.10) 
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We re-write this as 
 

 
   

2 2

1 0 00 0 2 2

e
( ) ( ) e e e

2ln

z k
ikz ikz zYV

I d J a J dz A
k


   

  

    
 

   
   
   

 
2 2

0
0 00 0 2 2

1 0 0

e
( ) ( ) e e

( )
n

z k
i z zn

n n

BikYV
d J a J dz

Y a k


    

   

     



 
  

   
    

  0 00 2 2 2 2 2 2

1 1
( ) ( )

2 ln

YV A A
d J a J

ik ikk ik k ik k

   
     

                  


 
 0 00 2 2 2 21 0 0 00

1
( ) ( )

( )
n

n n nn

BikYV
d J a J

Y a ik i k

   
      

 



 
        

  . (2.18) 

 
We compute 
 

 
 

   

  

2 2 2 2

2 2 2 2 2 2 2 2

1 k ik k ik

ikk ik k k ik k ik

   
    

    
  

      
 



NAWCADPAX/TR-2013/115 
 

85 

 
 
  

 
   

2 2 2 3 2 2 2

2 2 2 2 2 2 2 2 2 2

ik k k ik k k

k ik k ik k ik k ik k

   

       

      
 

         
 

 
   

2 2
2

2 2 2 2 2 2

ik k
k

k ik k ik k

 

    

   


     
 

 
 
     

2 2 2
2 2

2 2

2 2 2 2 2 2 2 2 2

ik k ik k
k k

k ik k k ik k

    

         

     
   

       
 (2.19) 

 

 
    

2 2
2

2 2 2 2 2 2 2 2

1 ik k
k

ikk ik k k ik k

  
      

   
  

      
 (2.20) 

 

 
 

   
  

2 2 2 2
0 0

2 2 2 2 2 2 2 2
00 0 0

1 n n

nn n n

i k i k

ik i k k i k i

     
        

    
 

      
 

 
 
  

2 2 2
0

2 2 2 2
0 0

n

n n

i k k

k i k i

  

    

  


   
 

 
   

2 2
2 0

2 2 2 2 2 2
0 0

n

n n

i k
k

k i k i k

  

      

  


     
 (2.21) 

 
 We substitute the last four expressions in (2.18) to get 
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 Similarly, for the third integral in (2.10), we have 
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 In the next section, we convert (2.10) to an infinite system of linear algebraic equations. 
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3. SYSTEM OF EQUATIONS 
 
 We write (2.10) in the form 
 
  1 2 3 4 ( ) ,I I I I u       r r  (3.1) 

 
where the four terms on the left are given by (2.15), (2.16), (2.22), and (2.23), while the term on 
the right is given by (2.2). We proceed to collect coefficients of the unknown terms 
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We combine terms above to get 
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 To convert the integral equation to a system of linear algebraic equations, we first integrate 
both sides of this with respect to   from a to b. In effect, we perform the integration 
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 We next multiply (3.2) by 0 ( )m     and integrate from a to b 
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 The last two expressions constitute an infinite system of linear algebraic equations in an 
infinite number of unknowns (A and the nB ). If in (3.5) we set all the nB  equal to zero, then we 

get for A 
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We can combine the integrals to reduce this to 
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. (3.8) 

 
 The issue we must address now is whether we should use such combinations in (3.5) and (3.6). 
What we have accomplished in splitting up the Green’s function is to increase the rate of 
convergence of the integrals in  by an order of magnitude. Had we not split the Green’s 
function, the integrals in (3.8) would behave as 2  , as    . In (3.7) and (3.8), the integrands 
behave as 3  . We have thus gained an order of magnitude in the rate of convergence. In fact, in 
the integral that does not involve the static term, the behavior is 4  . In the static term, we 
altered the original behavior of 2   by integrating part of the expression, with the rest behaving 
as 3  . This is true of all four terms. Since the acceleration of convergence has been 
accomplished, we should feel free to recombine the remaining terms. The only reservation here 
is the following. Looking at the numerator of (3.7), we see that the first integrals behaves as 3  , 
while the second can be split into two integrals, one behaving as 4   and the other as 5  . 
Whether the last two terms are much smaller than the first cannot be concluded from these 
observations. We proceed then to combine terms in (3.5) and (3.6). 
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 First, we perform the following calculations 
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and 
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 We substitute these results in (3.5) and (3.6). From (3.5) 
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while from (3.6) 
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The last two expressions constitute the final system of equations. 
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4. CALCULATION OF THE FIRST INTEGRAL IN (3.13) 
 
 The first integral in (3.13) is 
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 . (4.1) 

 
The square root in this (and all other expressions) must be chosen carefully. It appeared first in 
the Green’s function Fourier-series expansion, specifically in the integral in (2.6). For this 
integral to converge, the square root must be real. With 0   but small, we replace the original 

expression by 2 2k i   . This root must have a positive real part for k   
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 (4.2) 

 
which indeed has a positive real part. For k  , we must choose the branch of the arctangent 
function that gives a positive real part and has a dominant imaginary part as 0  . The 
appropriate branch is the one between / 2  and 3 / 2  
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A simple calculation shows that this is equivalent to setting 
 

 2 2 2 2k i k i      . (4.4) 
 
In general, we write 
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 Using this information, we write for (4.1) 
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 The first integral in (4.6) can be computed using a polynomial approximation of the Bessel 
function (reference 4, pp. 369-370). Since 
 

 1
2

a b
k


  (4.7) 

 
we see that the argument of the Bessel function is smaller than two. We elaborate further on this. 
Let 
 
 , 0 1a b     (4.8) 
 
Then, in place of (4.7), we have 
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. (4.9) 

 
We also have that 
 
 01k   (4.10) 

 
where 01  satisfies 

 
 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) 0 , 1, 2,...n n n nJ a Y b J b Y a n       (4.11) 

 
Using the values of 01  from reference 4, Table 9.7, p. 415, we can provide bounds for kb and k. 

The results are shown in Table 4.1. 
 

Table 4.1. Bounds on kb and k. 
 

a b   01  (m-1) kb < k <  (m-1) 1 b a   

0.8 12.56 1.111 12.56 1.25 
0.6 4.697 1.250 4.697 1.67 
0.4 2.073 1.429 2.073 2.5 
0.2 0.7632 1.667 0.7632 5 
0.1 0.3314 1.818 0.3314 10 

 
 An alternative way is to use Mathematica (reference 1) to compute this and all other 
integrals. This is what we did in practice. We first re-write the first integral in (4.6) as the sum of 
two integrals 
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For the second integral, we use the transformation 
 
 2 2 2t k    (4.13) 
 
to re-write the integral in the form 
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 For the second integral in (4.6) we use the following transformation (reference 5, p. 174) 
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We split the interval of integration into two intervals 
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 21 22I I   (4.17) 
 
where L is a large positive integer. In Mathematica (reference 1), we set it equal to 10,000. The 
last integral in (4.16) is computed by using the asymptotic form of the Bessel functions 
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We substitute in 22I  
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 We substitute (4.12), (4.14), (4.17) and (4.21) in (4.6) to get 
 

 
   2 2

0 0 0 0

0 2 2 2 2

( ) ( ) ( ) ( )k

k

J a J b J a J b
I i d d

k k

   
 

   

 
  

 
   

 
 2 2 2 2

0 0 2 2 2 2
0 02 0 0

( ) ( )
( ) ( )

k kJ a J b ki
d J k t a J k t b dt

k

  




             
   

 
 

2
2 2 2 2

0 0

2 2 2 20

( ) ( ) 1 1 1

2

L
J b t k J a t k

dt
a bt k L k

             . (4.22) 

 
This concludes the description of how we evaluate the first integral in (3.13). 
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5. CALCULATION OF THE SECOND INTEGRAL IN (3.13) 
 
 We continue the evaluation of the integrals in (3.13). The second integral in (3.13) is 
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 We also write the second integral in (5.4) as the sum of two integrals 
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where K is a large number. The last integral is evaluated asymptotically, while, for the first, we 
use the transformation 
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We choose K so that the upper limit of integration is a large integer L; thus, 
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In the second integral in (5.10), we may rationalize the denominator to get 
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where the lower limit of integration is large enough so that the integrand does not exhibit any 
singularities. 
 
 We replace (5.9), (5.12), and (5.14) in (5.4) to get 
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The first three terms are computed numerically in Mathematica (reference 1), while the last 
one is evaluated asymptotically. 
 
 The asymptotic evaluation proceeds as follows. From (5.3) 
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This concludes the description of how we evaluate the second integral in (3.13). From (5.15) and 
(5.19), the final expression is 
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6. THE FIRST INTEGRAL IN (3.14) 
 
 We proceed to evaluate the integrals in (3.14). The first integral in (3.14) is 
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We use (5.7) to re-write this 
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 The first integral is computed in Mathematica (reference 2). For the second integral, we 
write 
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Using (5.11), we re-write the first integral in the form 
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 2 2
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  (6.5) 

 
where L is a sufficiently large integer so that the last integral is free of singularities. The first two 
of these integrals are computed numerically in Mathematica (reference 2) while the last is 
evaluated asymptotically. We note that the singularity at 0m  is removable and that the integrand 

has a finite value there. 
 
 For     
 

 0
0 0 0 0 0 0 0 0

1 1 1 sin(2 ) sin(2 )
( ; , ; )
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 (6.6) 

 
and 
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                                  (6.7) 

 
so that 
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. (6.8) 

 
We can then write 
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 From (6.3), (6.5), and (6.9), the final expression for the third integral is 
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7. THE SECOND INTEGRAL IN (3.14) 
 
 From (3.14), the fourth integral is 
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 . (7.1) 

 
This is similar to the previous integral. Letting 
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and following Section 5, we write 
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 Using (5.5) in the form 
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Using (5.7), we re-write this as 
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 We turn to the second integral in (7.3) 
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 As with (5.12), for the first of these integrals, we write 
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while for the second 
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As with Sections 5 and 6, we make the upper limit of integration in the second integral in (7.8) 
be an integer. We can then write 
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 The last integral is computed asymptotically. We can approximate the integrand by 
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 From (7.6), (7.8), (7.9), and (7.12) we have for the fourth, and last, integral 
 

 
  

2 0 0
0 2 22 20

0 0

( ; , ; ) ( ; , ; )k
n m

n

n m

g a b g a b
I d

   
  

   
 

   

 
 

  
2 2 2 2 2 2

0 02 2
0 2 22 2 2 20

0 0

( ; , ; ) ( ; , ; )k n m

n

n m

g k t a b g k t a b k t
i k dt

k t k t

 


 

  
 

     

 
 

   
2 2 4

0

22 2 2 2 2 2
0 0 010

0 2 22 2 2
0 0

( ; , ; ) ( ; , ; )
m

n m nk

n m

g t k a b g t k a b k t k
dt

k t t k


  

 

 
   


     

  

 
 

   2 2 4
0

22 2 2 2 2 2
0 0 0

10 2 22 2 2
0 0

( ; , ; ) ( ; , ; )

m

n m nL

k

n m

g t k a b g t k a b k t k
dt

k t t k


  

 
 

   


     
  

 
 

2 2
0

2 2
0 0 0 0 0 0 0 0

1 1

( ) ( ) ( ) ( )2
n

m n m n

k

aY a Y a bY b Y bL k


   

  
  

  
. (7.13) 

 



NAWCADPAX/TR-2013/115 
 

111 

APPENDIX: EVALUATION OF INTEGRALS FOR SECTION 3 
 
 We first observe that, from (2.5) and (2.7) 
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Using standard formulas (reference 3, p. 87), we proceed to evaluate the last two integrals 
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 Finally, we compute 
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If we proceed to complete this calculation, we will find that the result is zero. On the other hand, 
if m n , then 
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Proceeding with the same kind of formulas as above, we find 
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PART 4 
NOTES ON COMPUTING THE INFINITE SYSTEM OF EQUATIONS 

 
 

ABSTRACT 
 
 This is the fourth, and final, part of the report on the formulation of the problem of radiation of 
a coaxial line into a half space in terms of BIEs. In it, we give a detailed presentation of how we 
compute the infinite system of equations. Specifically, we truncate the infinite system and 
consider finite systems of dimensions from 1x1 to 11x11. We examine the convergence of the 
coefficients of these systems for four different coaxial lines and use them in computing far-field 
quantities, such as directivity and gain. 
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1. INTRODUCTION: WHAT IS TO BE COMPUTED 
 
 We use here the results of Part 3 to compute the radiated fields of a coaxial transmission line 
that opens into a half space. We use Mathematica (reference 1) in all computations. In this 
section we assign values to all relevant parameters. 
 
 We set the characteristic impedance of the coaxial line at 50 ; thus, 
 

 0
0

0

ln( ) ln( / )
50

2 2c

b a
Z Z


  

   . (1.1) 

 
From this 
 

 0 0100 /e 2.3023
b

a
       (1.2) 

 
or 
 

 0.4343
a

b
   . (1.3) 

 
 For all modes (except the TEM) to be suppressed 
 

 1
2

a b
k


  (1.4) 

 
or 
 

 1.3944 or 0.2219
b

kb


  . (1.5) 

 
 We set 1   (300 MHz) and give b the values shown in Table 1.1. 
 

Table 1.1. Values of the parameters for the numerical computation ( 1  ). 
 

Case b (m) a (m) kb ka 
1 0.05 0.021715 0.314159 0.136439 
2 0.10 0.043430 0.628319 0.272879 
3 0.15 0.065145 0.942478 0.409318 
4 0.20 0.086860 1.256637 0.545757 
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2. FIRST INTEGRAL 
 
 In this section, we compute the integral in (4.22) of Part 3. The imaginary part is the sum of 
two integrals. Both were computed in Mathematica (reference 1). Their sum is given in Table 
2.1 for the four different coaxial lines in Table 1.1. 
 

Table 2.1. Numerical results for integral 11I , the imaginary part of (4.22). 
 

Case 
11I  

1 - 0.0000420305 i 
2 - 0.000649198 i 
3 - 0.00309862 i 
4 - 0.00901561 i 

 
 The result for the second line in (4.22) is shown in Figure 2.2. 
 

Table 2.2. Numerical results for integral 12I , the real part of (4.22). 
 

Case 
12I  

1 0.0136816 
2 0.0285517 
3 0.0452372 
4 0.0634187 

 
 The entire integral in (4.22) is shown in Table 2.3. 
 

Table 2.3. Numerical results for integral 1I , the entire expression in (4.22). 
 

Case 
1I  

1 0.0136816 - 0.0000420305 i 
2 0.0285517 - 0.000649198 i 
3 0.0452372 - 0.00309862 i 
4 0.0634187 - 0.00901561 i 
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3. SECOND INTEGRAL 
 
 The second integral appears in (5.20) of Part 3. We compute this integral for the four cases in 
Table 1.1 and the first 10 roots of the transcendental equation 
 
 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) 0n n n nJ a Y b J b Y a     . (3.1) 

 
The roots for the four cases have been computed in Mathematica (reference 1). We observe that 
each successive case (column) is equal to the first one divided by the number of the column. We 
note that Mathematica has a subroutine that finds the roots of this equation but we did not take 
advantage of it. 
 

Table 3.1. First ten roots of the transcendental equation (3.1) 
 

Root No. Case 1 Case 2 Case 3 Case 4 
1 110.131 55.0656 36.7104 27.5328 
2 221.636 110.818 73.8786 55.4089 
3 332.867 166.434 110.956 83.2168 
4 444.02 222.01 148.007 111.005 
5 555.14 277.57 185.047 138.785 
6 666.243 333.122 222.081 166.561 
7 777.337 388.668 259.112 194.334 
8 888.424 444.212 296.141 222.106 
9 999.508 499.754 333.169 249.877 
10 1110.59 555.294 370.196 277.647 

 
 The entire expression (5.20) is computed in Mathematica. The results are displayed in Tables 
3.2.1 through 3.2.5. 
 

Table 3.2.1 Numerical results for integral 2I , the expression (5.20) (roots 1 and 2) 
 

Case 
Root 

1 2 
1 1.26328 + 0.0036659 i - 2.07424 + 0.000668069 i 
2 1.22771 + 0.0277552 i - 2.06343 + 0.00443626 i 
3 1.18825 + 0.0853679 i - 2.03808 + 0.0109216 i 
4 1.16772 + 0.177285 i - 1.99193 + 0.0109216 i 
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Table 3.2.2 Numerical results for integral 2I , the expression (5.20) (roots 3 and 4) 
 

Case 
Root 

3 4 
1 17.9066 + 0.0147716 i 4.7176 – 0.000653382 i 
2 17.7639 + 0.111543 i 4.70708 – 0.00433879 i 
3 17.6066 + 0.341594 i 4.68246 – 0.0100815 i 
4 17.5259 + 0.705258 i 4.63767 – 0.0107471 i 

 
Table 3.2.3 Numerical results for integral 2I , the expression (5.20) (roots 5 and 6) 

 

Case 
Root 

5 6 
1 - 3.52255 - 0.00168172 i 3.76781 - 0.00032758 i 
2 - 3.50631 - 0.0126963 i 3.76253 - 0.00217531 i 
3 - 3.48842 - 0.0388686 i 3.7502 - 0.00505523 i 
4 - 3.47925 - 0.0802122 i 3.72778 - 0.00539464 i 

 
Table 3.2.4 Numerical results for integral 2I , the expression (5.20) (roots 7 and 8) 

 

Case 
Root 

7 8 
1 - 11.0512 - 0.00370696 i - 11.7554 + 0.00074151 i 
2 - 11.0154 - 0.0279843 i - 11.7434 + 0.00492407 i 
3 - 10.9759 - 0.0856635 i - 11.7155 + 0.0114437 i 
4 - 10.9557 - 0.17676 i - 11.6648 + 0.0122167 i 

 
Table 3.2.5 Numerical results for integral 2I , the expression (5.20) (roots 9 and 10) 

 

Case 
Root 

9 10 
1 5.31419 + 0.00137324 i - 4.72606 + 0.000233462 i 
2 5.30092 + 0.0103665 i - 4.72226 + 0.00155033 i 
3 5.28632 + 0.031732 i - 4.71348 + 0.00360309 i 
4 5.27883 + 0.0654731 i - 4.69751 + 0.0038471 i 
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4. THE THIRD INTEGRAL 
 
 The third integral is given by (6.3) in Part 3. The entire expression is computed in 
Mathematica. The results are displayed in Tables 4.1.1 through 4.1.5. 
 

Table 4.1.1 Numerical results for integral 3I , the expression (6.3) (roots 1 and 2) 
 

Case 
Root 

1 2 
1 - 0.00354536 + 0.0000333409 i 0.00433068 + 3.01548*10-6 i 
2 - 0.00772607 + 0.000507352 i 0.00875998 + 0.0000400965 i 
3 - 0.0141551 + 0.00236027 i 0.0136065 + 0.000139937 i 
4 - 0.0219913 + 0.00661357 i 0.0191409 + 0.000198389 i 

 
Table 4.1.2 Numerical results for integral 3I , the expression (6.3) (roots 3 and 4) 

 

Case 
Root 

3 4 
1 - 0.0057484 + 0.0000443849 i - 0.00269068 - 1.47166*10-6 i 
2 - 0.0119776 + 0.000670672 i - 0.00543566 - 0.0000195511 i 
3 - 0.0199091 + 0.0030836 i - 0.00797123 - 0.0000681768 i 
4 - 0.026884 + 0.00849921 i - 0.011534 - 0.0000969721 i 

 
Table 4.1.3 Numerical results for integral 3I , the expression (6.3) (roots 5 and 6) 

Case 
Root 

5  6 
1 0.000420177 - 3.02957*10-6 i - 0.00102198 - 4.91704*10-7 i 
2 0.000916501 - 0.0000457526 i - 0.00206025 - 6.53125*10-6 i 
3 0.0014815 - 0.000210169 i - 0.00314133 - 0.0000227721 i 
4 0.00234308 - 0.000578554 i - 0.00434858 - 0.0000324115 i 

 
Table 4.1.4 Numerical results for integral 3I , the expression (6.3) (roots 7 and 8) 

 

Case 
Root 

7 8 
1 0.000739879 - 4.76895*10-6 i 0.00185938 + 8.34656*10-7 i 
2 0.00154382 - 0.0000720099 i 0.00374666 + 0.000011086 i 
3 0.00231508 - 0.000330701 i 0.00562887 + 0.0000386513 i 
4 0.00340646 - 0.000910044 i 0.00785099 + 0.0000550258 i 
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Table 4.1.5 Numerical results for integral 3I , the expression (6.3) (roots 9 and 10) 
 

Case 
Root 

9 10 
1 - 0.000201699 + 1.37394*10-6 i 0.000498893 + 2.10218*10-7 i 
2 - 0.000431858 + 0.0000207448 i 0.00100607 + 2.79208*10-6 i 
3 - 0.000688448 + 0.0000952597 i 0.0015313 + 9.73432*10-6 i 
4 - 0.00108081 + 0.000262104 i 0.00210175 + 0.0000138596 i 
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5. THE FOURTH INTEGRAL 
 
 The fourth integral is given by (7.1) in Part 3, and in computable form by (7.13). The result in 
(7.13) depends not only on the index m but also on the index n. Since n runs from 1 to 10, we 
have 10 times as much data as in the previous cases. For this reason, we do not form tables but, 
rather we display the raw data from Mathematica. For the first 10 roots, we have 
 
{{{-0.566603+0.002908 i,0.00857833 +0.000529959 i,-
5.38481+0.0117177 i,-0.0107252-0.000518308 i,0.81978 -0.00133404 
i,-0.00604899-0.000259859 i,2.12689 -0.00294057 i,0.0147767 
+0.000588217 i,-0.879104+0.00108933 i,0.00491084 +0.000185199 
i},{0.00425818 +0.000263014 i,-0.840763+0.0000479381 i,0.0279246 
+0.00105982 i,1.54291 -0.0000468842 i,-0.00367476-0.000120658 
i,1.03996 -0.0000235059 i,-0.00880162-0.000265962 i,-
2.82511+0.000053208 i,0.00344896 +0.0000985254 i,-
1.01075+0.0000167524 i},{-1.77903+0.00387126 i,0.0185789 
+0.00070551 i,-25.442+0.0155992 i,-0.0222245-0.00069 i,4.5937 -
0.00177594 i,-0.0122724-0.000345938 i,13.1365 -0.00391463 
i,0.0295536 +0.000783066 i,-5.7899+0.00145017 i,0.00974883 
+0.000246546 i},{-0.00265561-0.000128361 i,0.769935 -0.0000233956 
i,-0.0166423-0.00051723 i,-1.64689+0.0000228813 i,0.00215396 
+0.0000588857 i,-1.20977+0.0000114717 i,0.00510935 +0.000129799 
i,3.47599 -0.0000259675 i,-0.00198939-0.000048084 i,1.29426 -
8.17578×10-6 i},{0.162381 -0.000264239 i,-0.00146457-0.0000481557 
i,2.75418 -0.00106475 i,0.00172414 +0.0000470971 i,-
0.543394+0.000121219 i,0.000942938 +0.0000236126 i,-
1.64399+0.000267199 i,-0.00226252-0.0000534495 i,0.753789 -
0.0000989835 i,-0.000741743-0.0000168284 i},{-0.000998465-
0.0000428871 i,0.345853 -7.81679×10-6 i,-0.00613222-0.000172814 
i,-0.806248+7.64495×10-6 i,0.000787625 +0.0000196745 i,-
0.625213+3.83287×10-6 i,0.00186647 +0.0000433678 i,1.86557 -
8.6761×10-6 i,-0.000725125-0.0000160655 i,0.71443 -2.73165×10-6 
i},{0.300869 -0.000415949 i,-0.00250545-0.0000758037 i,5.62488 -
0.00167606 i,0.00292745 +0.0000741373 i,-1.1741+0.000190816 
i,0.00159898 +0.0000371694 i,-3.69107+0.000420608 i,-0.00382792-
0.0000841368 i,1.74081 -0.000155814 i,-0.00125978-0.0000264902 
i},{0.00182884 +0.0000727999 i,-0.704602+0.0000132688 i,0.0110647 
+0.000293348 i,1.73733 -0.0000129771 i,-0.00141593-0.0000333971 
i,1.39912 -6.50621×10-6 i,-0.00334119-0.0000736159 i,-
4.29179+0.0000147275 i,0.00129871 +0.0000272709 i,-
1.67888+4.63691×10-6 i},{-0.0967212+0.000119835 i,0.000762736 
+0.0000218391 i,-1.92827+0.000482874 i,-0.000885603-0.000021359 
i,0.418727 -0.0000549743 i,-0.000481306-0.0000107086 i,1.35405 -
0.000121178 i,0.00115215 +0.0000242399 i,-0.652457+0.0000448901 
i,0.000377498 +7.63187×10-6 i},{0.000486278 +0.0000183356 i,-
0.201679+3.34192×10-6 i,0.00292129 +0.0000738832 i,0.51754 -
3.26845×10-6 i,-0.000372048-8.41147×10-6 i,0.428674 -1.63867×10-6 
i,-0.000880994-0.0000185411 i,-1.34322+3.7093×10-6 i,0.000341725 
+6.86851×10-6 i,-0.53434+1.16786×10-6 i}},{{-0.544135+0.0216915 
i,0.00803394 +0.00346806 i,-5.29309+0.0871752 i,-0.0102082-
0.00339188 i,0.809014 -0.00992268 i,-0.00579225-0.00170056 
i,2.10209 -0.0218709 i,0.0141846 +0.00384942 i,-
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0.869407+0.00810185 i,0.00472671 +0.00121198 i},{0.00397402 
+0.00171479 i,-0.835292+0.000274929 i,0.0268598 +0.00689244 
i,1.53667 -0.000268894 i,-0.00355686-0.000784538 i,1.0361 -
0.000134814 i,-0.00853931-0.00172923 i,-2.81408+0.000305168 
i,0.00335349 +0.000640577 i,-1.00638+0.0000960814 i},{-
1.74106+0.0286746 i,0.0178479 +0.00458514 i,-25.2715+0.11524 i,-
0.0215319-0.00448442 i,4.57028 -0.0131171 i,-0.011922-0.00224833 
i,13.072 -0.0289119 i,0.0287416 +0.00508934 i,-5.75974+0.0107101 
i,0.00948526 +0.00160237 i},{-0.0025154-0.000836135 i,0.766117 -
0.000134058 i,-0.0161017-0.00336077 i,-1.64139+0.000131116 
i,0.00209031 +0.000382542 i,-1.20557+0.0000657369 i,0.00495753 
+0.000843177 i,3.46201 -0.000148803 i,-0.00192969-0.000312347 
i,1.28809 -0.0000468503 i},{0.159489 -0.00195615 i,-0.001414-
0.000312798 i,2.73914 -0.00786156 i,0.00167437 +0.000305926 i,-
0.540922+0.000894839 i,0.000917494 +0.00015338 i,-
1.63608+0.00197235 i,-0.00219693-0.000347194 i,0.749676 -
0.000730635 i,-0.000720989-0.000109313 i},{-0.000951622-
0.00027932 i,0.344182 -0.0000447838 i,-0.00595562-0.0011227 i,-
0.803284+0.0000438008 i,0.000768246 +0.000127793 i,-
0.622639+0.0000219602 i,0.001819 +0.000281673 i,1.85637 -
0.0000497095 i,-0.00070751-0.000104343 i,0.710204 -0.0000156509 
i},{0.295914 -0.00307878 i,-0.00242454-0.000492313 i,5.5944 -
0.0123733 i,0.0028485 +0.000481498 i,-1.16828+0.00140839 
i,0.00155717 +0.000241406 i,-3.67066+0.00310427 i,-0.0037231-
0.000546449 i,1.72959 -0.00114995 i,-0.0012235-0.000172048 
i},{0.00174669 +0.000474114 i,-0.70098+0.0000760155 i,0.0107399 
+0.00190566 i,1.72976 -0.000074347 i,-0.0013748-0.000216913 
i,1.39203 -0.000037275 i,-0.00323485-0.000478107 i,-
4.26555+0.0000843763 i,0.0012527 +0.00017711 i,-
1.66659+0.0000265657 i},{-0.0951797+0.000886947 i,0.000738688 
+0.000141827 i,-1.91701+0.00356454 i,-0.000859986-0.000138712 
i,0.416318 -0.000405732 i,-0.000466894-0.0000695451 i,1.3451 -
0.000894289 i,0.00111042 +0.000157423 i,-0.64739+0.00033128 
i,0.00036287 +0.0000495643 i},{0.000465729 +0.000119408 i,-
0.200534+0.000019145 i,0.0028385 +0.000479952 i,0.514829 -
0.0000187247 i,-0.000362402-0.0000546309 i,0.426016 -9.38793×10-6 
i,-0.000853457-0.000120414 i,-1.33318+0.0000212507 i,0.000330501 
+0.0000446062 i,-0.529591+6.69072×10-6 i}},{{-0.523709+0.0650368 
i,0.0022977 +0.00786479 i,-5.21129+0.26026 i,-0.00464348-
0.00769733 i,0.799647 -0.0296142 i,-0.00300696-0.00385971 
i,2.08124 -0.0652676 i,0.00788145 +0.00873736 i,-
0.861588+0.0241768 i,0.00274315 +0.00275099 i},{0.00113137 
+0.00386437 i,-0.826442+0.000480635 i,0.0156485 +0.0154798 
i,1.5279 -0.000470437 i,-0.00228503-0.00176153 i,1.03156 -
0.000235897 i,-0.00574097-0.00388238 i,-2.80337+0.000534009 
i,0.002319 +0.00143815 i,-1.00283+0.000168135 i},{-
1.70148+0.0849746 i,0.0103677 +0.0102862 i,-25.1102+0.340059 i,-
0.0142872-0.0100672 i,4.55118 -0.0386942 i,-0.00829791-0.00504806 
i,13.0274 -0.0852795 i,0.0205462 +0.0114275 i,-5.74204+0.0315897 
i,0.00690648 +0.00359798 i},{-0.00113422-0.00188271 i,0.760584 -
0.000234183 i,-0.0106512-0.00754175 i,-1.63568+0.000229214 
i,0.00146939 +0.000858217 i,-1.20244+0.000114937 i,0.00358463 
+0.00189149 i,3.45405 -0.000260189 i,-0.00141951-0.000700664 
i,1.28524 -0.0000819216 i},{0.156387 -0.00579165 i,-0.000903337-
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0.000701136 i,2.72612 -0.0231776 i,0.00117898 +0.000686209 i,-
0.539298+0.0026373 i,0.000669242 +0.000344089 i,-
1.63204+0.00581244 i,-0.00163336-0.000778926 i,0.74795 -
0.00215308 i,-0.000543438-0.000245248 i},{-0.000490266-
0.000628855 i,0.342058 -0.0000782216 i,-0.00414459-0.00251906 i,-
0.800967+0.000076562 i,0.000563258 +0.000286658 i,-
0.621272+0.0000383913 i,0.00136826 +0.000631788 i,1.85263 -
0.0000869081 i,-0.000541296-0.000234033 i,0.708767 -0.0000273634 
i},{0.290601 -0.00911319 i,-0.00162162-0.00110327 i,5.57123 -
0.0364701 i,0.00207271 +0.00107978 i,-1.16521+0.00414982 
i,0.00116998 +0.000541438 i,-3.66245+0.00914592 i,-0.00284932-
0.00122567 i,1.72585 -0.00338789 i,-0.000949291-0.000385908 
i},{0.000962164 +0.00106736 i,-0.696984+0.000132767 i,0.00765227 
+0.00427563 i,1.72511 -0.00012995 i,-0.00102291-0.000486548 
i,1.38908 -0.0000651623 i,-0.002456-0.00107234 i,-
4.25691+0.000147511 i,0.0009628 +0.000397226 i,-
1.66309+0.0000464444 i},{-0.0935508+0.00262509 i,0.000506765 
+0.000317803 i,-1.90956+0.0105053 i,-0.000634578-0.000311037 
i,0.415259 -0.00119537 i,-0.000353581-0.000155965 i,1.34207 -
0.00263452 i,0.000851885 +0.000353063 i,-0.645931+0.000975894 
i,0.000281057 +0.000111163 i},{0.000268097 +0.000268815 i,-
0.199436+0.0000334374 i,0.00206333 +0.00107682 i,0.513462 -
0.0000327279 i,-0.000274645-0.000122537 i,0.425085 -0.0000164111 
i,-0.000659985-0.000270069 i,-1.3303+0.0000371506 i,0.000259113 
+0.000100041 i,-0.528378+0.000011697 i}},{{-0.523207+0.13013 i,-
0.0114275+0.00814608 i,-5.20929+0.517813 i,0.00867961 -0.00801511 
i,0.799399 -0.0588946 i,0.00366306 -0.00402319 i,2.08062 -
0.129784 i,-0.00720973+0.00911082 i,-0.861324+0.048073 i,-
0.00200699+0.00286904 i},{-0.00556127+0.00396658 i,-
0.812806+0.000350881 i,-0.0106277+0.0158966 i,1.5146 -0.000344593 
i,0.00069799 -0.00180902 i,1.02485 -0.000172904 i,0.000825982 -
0.00398707 i,-2.78805+0.000391499 i,-0.000111212+0.00147693 i,-
0.997943+0.000123278 i},{-1.68285+0.167279 i,-
0.00709115+0.0105464 i,-25.0354+0.665716 i,0.00264411 -0.0103764 
i,4.54241 -0.0757173 i,0.000175133 -0.00520837 i,13.0072 -
0.166856 i,0.00138282 +0.0117947 i,-5.73413+0.0618049 
i,0.000876203 +0.00371421 i},{0.00210141 -0.00193866 i,0.752356 -
0.000171171 i,0.00204888 -0.00776907 i,-1.62757+0.000168105 
i,0.000025202 +0.00088411 i,-1.19828+0.0000843491 i,0.00039908 
+0.00194857 i,3.44434 -0.000190989 i,-0.000238183-0.000721811 
i,1.28206 -0.0000601397 i},{0.154562 -0.0113872 i,0.000285326 -
0.000718316 i,2.71868 -0.0453177 i,0.0000255571 +0.000706732 i,-
0.538402+0.00515435 i,0.0000914928 +0.000354741 i,-
1.6299+0.0113585 i,-0.000324936-0.000803336 i,0.747076 -
0.00420728 i,-0.000131303-0.000252974 i},{0.000589496 -
0.000647953 i,0.338976 -0.0000571887 i,0.0000823688 -0.00259662 
i,-0.797887+0.0000561646 i,0.0000838364 +0.000295491 i,-
0.619656+0.0000281813 i,0.000313557 +0.000651262 i,1.84875 -
0.0000638099 i,-0.000151385-0.000241247 i,0.707452 -0.0000200929 
i},{0.28715 -0.0179117 i,0.000247122 -0.00113006 i,5.55689 -
0.0712836 i,0.000262664 +0.00111184 i,-1.16342+0.00810767 
i,0.000265133 +0.000558081 i,-3.65799+0.0178667 i,-0.000805087-
0.00126381 i,1.72394 -0.00661796 i,-0.000306815-0.000397979 i},{-
0.000871399+0.00110004 i,-0.691327+0.0000970764 i,0.000468113 
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+0.00440829 i,1.71936 -0.000095338 i,-0.000206034-0.000501657 
i,1.38597 -0.0000478371 i,-0.000653892-0.00110565 i,-
4.2492+0.000108316 i,0.000294315 +0.000409566 i,-
1.66038+0.0000341072 i},{-0.0924306+0.00515881 i,-
0.0000320495+0.000325492 i,-1.9048+0.0205307 i,-0.000111555-
0.000320243 i,0.414644 -0.00233512 i,-0.0000913684-0.000160745 
i,1.34047 -0.00514585 i,0.000257298 +0.000364017 i,-
0.64522+0.00190606 i,0.000093544 +0.000114631 i},{-
0.000193758+0.000277071 i,-0.197922+0.0000244496 i,0.000256923 
+0.00111033 i,0.511888 -0.0000240118 i,-0.0000697322-0.000126354 
i,0.424209 -0.0000120483 i,-0.000208931-0.000278484 i,-
1.32805+0.0000272804 i,0.0000923197 +0.000103159 i,-
0.527559+8.59024×10-6 i}}} 
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6. THE SYSTEM OF EQUATIONS 
 
 The infinite system of equations is given by (3.13) and (3.14) in Part 3. We can solve it by 
truncating it to a finite system of equations. What we have done is to work with a 1x1 system 
(returning TEM mode only) up to a 11x11 system. For systems of order higher than this, we need 
to compute the integrals above for more roots of the transcendental equation (3.1). 
 
 Since we stop with a 11x11 system, we examine the convergence of the first four coefficients 
as a function of the order of the system for each of the four coaxial lines in Table 1.1. In Figures 
6.1 and 6.2, we display the real and imaginary part, respectively, of the coefficient A as a 
function of the order of the system. We see that, for engineering purposes, A has stabilized for 
the 11x11 system and for all four coaxials. If we put these results under the microscope, 
however, we may conclude that the data has converged to at most two significant digits, as seen 
from Figures 6.3 and 6.4. 
 
 We see that, as the radii of the coax get larger, the reflection coefficient becomes smaller in 
magnitude. This means that more energy escapes into the upper-half space. This will become 
evident when we compute the gain of the coaxial line as an antenna. 
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Figure 6.1. The real part of the reflection coefficient A as a function of the order of the 

system of equations. The smallest system is 1x1 and the largest 11x11. 
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Figure 6.2. The imaginary part of the reflection coefficient A as a function of the order 

of the system of equations. The smallest system is 1x1 and the largest 11x11. 
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Figure 6.3. Detailed version of Figure 6.1. Case 1 is the top left graph. Case 2 is the top right, 
Case 3 the bottom left and Case 4 the bottom right. 

 

 
Figure 6.4. Detailed version of Figure 6.2. Case 1 is the top left graph. Case 2 is the top right, 

Case 3 the bottom left and Case 4 the bottom right. 
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 In Figures 6.5 through 6.8, we present the convergence of coefficient B1. Again, we have 
convergence to two significant digits. 

 

 
Figure 6.5. The real part of coefficient B1 as a function of the order of the system of equations. 
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Figure 6.6. The imaginary part of coefficient B1 as a function of the order of the system of 
equations. The top curve is for Case 1 (smallest coaxial), the one below it for Case 2, and so on. 

The smallest system in this case is the 2x2. 
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Figure 6.7. Detailed version of Figure 6.5. Case 1 is the top left graph. Case 2 is the top right, 
Case 3 the bottom left and Case 4 the bottom right. 

 

 
 

Figure 6.8. Detailed version of Figure 6.6. Case 1 is the top left graph. Case 2 is the top right, 
Case 3 the bottom left and Case 4 the bottom right. 
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 In Figures 6.9 through 6.12, we examine the convergence of coefficient B2. The results are 
displayed in Figures 6.9-6.12 and, again, we get convergence to two significant digits. 
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Figure 6.9. The real part of coefficient B2 as a function of the order of the system of equations. 
The smallest system is 3x3 and the largest is 11x11. 

 



NAWCADPAX/TR-2013/115 
 

133 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

3 4 5 6 7 8 9 10 11

Im
ag

in
ar

y 
P

ar
t o

f 
C

oe
ff

ic
ie

nt
 B

2

Order of System of Equations

b = 5 cm

b = 10 cm

b = 15 cm

b = 20 cm

 
 

Figure 6.10. The imaginary part of coefficient B2 as a function of the order of the system of 
equations. The smallest system is 3x3 and the largest 11x11. 
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Figure 6.11. Detailed version of Figure 6.9. Case 1 is the top left graph. Case 2 is the top right, 
Case 3 the bottom left and Case 4 the bottom right. 

 

 
 

Figure 6.12. Detailed version of Figure 6.10. Case 1 is the top left graph. Case 2 is the top right, 
Case 3 the bottom left and Case 4 the bottom right.  
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 In Figures 6.13 through 6.16, we examine the convergence of coefficient B3. Convergence 
appears to be to two significant digits. 
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Figure 6.13. The real part of coefficient B3 as a function of the order of the system of equations. 

The smallest system is 4x4 and the largest 11x11. 
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Figure 6.14. The imaginary part of coefficient B3 as a function of the order of the system of 

equations. The top curve is for Case 1 (smallest coaxial), the one below it for Case 2, and so on. 
The smallest system in this case is the 4x4. 
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Figure 6.15. Detailed version of Figure 6.13. Case 1 is the top left graph. Case 2 is the top right, 

Case 3 the bottom left and Case 4 the bottom right. 
 

 
Figure 6.16. Detailed version of Figure 6.14. Case 1 is the top left graph. Case 2 is the top right, 

Case 3 the bottom left and Case 4 the bottom right. 
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 In Figure 6.17, we have plotted the magnitude of the coefficients B1 to B10, normalized to the 
magnitude of the reflection coefficient A. The numbers for the coefficients came out of the 11x11 
system. As we saw above, the accuracy of these coefficients does not go beyond the first couple 
of digits. This graph, however, is useful in displaying their order of magnitude relative to that of 
A. 
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Figure 6.17. Magnitude of coefficients B1 to B10 relative to that of reflection coefficient A. 

The numbers are those of the 11x11 system. 
 
 In Figure 6.18 we plot the real part of A on the horizontal axis and the imaginary on the 
vertical. The values of the four coax cases are plotted and connected in sequence using straight-
line segments. It is clear that, as the dimensions of the coax increase, the real part of A decreases 
while the absolute value of the imaginary part increases. 
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Figure 6.18. The real and imaginary parts of the reflection coefficient A for the four coax sizes. 

The four computed points are connected using straight-line segments. 
 
 From Figures 6.19 and 6.21, for B1 and B3, both the real part and the absolute value of the 
imaginary part increase. 
 
 From Figure 6.20, both the absolute value of the real part and the imaginary part of B2 
increase. 
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Figure 6.19. The real and imaginary parts of the reflection coefficient B1 for the four coax sizes. 

The four computed points are connected using straight-line segments. 
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Figure 6.20. The real and imaginary parts of the reflection coefficient B2 for the four coax sizes. 

The four computed points are connected using straight-line segments. 
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Figure 6.21. The real and imaginary parts of the reflection coefficient B3 for the four coax sizes. 

The four computed points are connected using straight-line segments. 
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7. FAR FIELD 
 
 In this section we compute quantities related to the far field. The far field is given by (7.22) 
and (7.23) of Part 2. For the calculations, we use the coefficients A, B1, B2, and B3. We compute 
far-field amplitude and phase, far-field intensity (average radiated power density), total radiated 
average power, directivity, and gain. The definitions we used are the following. 
 
Far-field amplitude and phase: 
 
 FarFieldAmplitude ( )F   (7.1) 
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where, from (7.22) of Part 2, 
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Far-field intensity (reference 2, p. 38): 
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Total radiated average power (reference 2, p. 38): 
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Directivity (reference 2, p. 39): 
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Average input power: 
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2 1

AverageInputPower
2 100c

V

Z
   (7.7) 

 
since the characteristic impedance of the line is 50  and the input is one Volt. 
 
Gain (reference 2, p. 58): 
 

 
FarFieldIntensity

Gain 2 FarFieldIntensity 100
AverageInputPower

2





    . (7.8) 

 
 With these definitions, we proceed to display some of the calculations we performed. We 
begin with the far-field amplitude. The results are shown in Figure 7.1. The polar angle  is 
measured from the perpendicular to the infinite plane toward the plane (i.e., it is equal to 90 deg 
minus elevation). We see that, as the dimensions of the line increase, so is the energy that 
escapes into the upper-half space. Equivalently, as the operating frequency approaches the cut-
off frequency, more and more energy escapes into the upper half space. 
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Figure 7.1. Far-field amplitude for the four coaxial cases. 
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 Figure 7.2 shows the phase of the far field. The four different cases are shown separately 
because of the slow variation of phase. As the size of the coax increases, so does the variation. 
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Figure 7.2. Far-field phase for the four coaxial cases. 
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 The results for directivity are shown in Figure 7.3. The variation in the four cases is small but 
there is a clear tendency for the directivity to rise as the coaxial gets bigger. 
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Figure 7.3. Directivity (dB) of four coaxials. Case 1 is the bottom figure while Case 4 is the 

top one. The rest follow in a clockwise fashion. 
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 The gain results are shown in Figure 7.4. Clearly, the gain improves toward the horizon and 
with increasing coaxial size. 
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Figure 7.4. Variation of gain with polar angle for the four coaxials. 

 
 We have performed additional calculations that appear in the paper that came out of this study 
(reference 3). There, we compared the coefficient A to that obtained by Bird (reference 4) and 
found it to be in agreement to two significant digits in all four cases. We also computed gain 
relative error when using only the 1x1 system rather than the 11x11, and we did the same for the 
normalized admittance at the opening to the half-space. 
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CONCLUSIONS 
 

 We have solved the classical problem of radiation by a coaxial line using BIEs. Because of the 
circular symmetry in the geometry, we can convert the vector integral equations to three scalar 
equations and we show that, the solution of any of these will determine the unknown current 
density. We express the latter as an infinite series in the modes of the coaxial line and we 
determine the unknown coefficients by taking advantage of the orthogonality of the modes. This 
results in an infinite system of linear equations with the unknowns being the coefficients of the 
infinite series. In the last part of the report, we have presented numerical examples. The principal 
asset of this method is that we can provide an engineering solution to the problem by truncating 
the infinite system to a small system of linear equations. In Part 4, the largest system we used has 
11 unknowns (11x11). By contrast, use of other, well known numerical methods, such as finite 
elements or the method of moments or a hybrid of the two, would require solution of systems 
with hundreds if not thousands of unknowns. In closing, we wish to mention, that the precise 
same method can be applied to radiation from a circular or rectangular waveguide or any other 
guide whose natural modes are known analytically. 
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